Properties

Label 216000.5321
Modulus 216000216000
Conductor 108000108000
Order 18001800
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(216000, base_ring=CyclotomicField(1800))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,675,100,1296]))
 
pari: [g,chi] = znchar(Mod(5321,216000))
 

Basic properties

Modulus: 216000216000
Conductor: 108000108000
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 18001800
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ108000(45821,)\chi_{108000}(45821,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 216000.ye

χ216000(41,)\chi_{216000}(41,\cdot) χ216000(281,)\chi_{216000}(281,\cdot) χ216000(761,)\chi_{216000}(761,\cdot) χ216000(1481,)\chi_{216000}(1481,\cdot) χ216000(1721,)\chi_{216000}(1721,\cdot) χ216000(2441,)\chi_{216000}(2441,\cdot) χ216000(2921,)\chi_{216000}(2921,\cdot) χ216000(3161,)\chi_{216000}(3161,\cdot) χ216000(3641,)\chi_{216000}(3641,\cdot) χ216000(3881,)\chi_{216000}(3881,\cdot) χ216000(4361,)\chi_{216000}(4361,\cdot) χ216000(5081,)\chi_{216000}(5081,\cdot) χ216000(5321,)\chi_{216000}(5321,\cdot) χ216000(6041,)\chi_{216000}(6041,\cdot) χ216000(6521,)\chi_{216000}(6521,\cdot) χ216000(6761,)\chi_{216000}(6761,\cdot) χ216000(7241,)\chi_{216000}(7241,\cdot) χ216000(7481,)\chi_{216000}(7481,\cdot) χ216000(7961,)\chi_{216000}(7961,\cdot) χ216000(8681,)\chi_{216000}(8681,\cdot) χ216000(8921,)\chi_{216000}(8921,\cdot) χ216000(9641,)\chi_{216000}(9641,\cdot) χ216000(10121,)\chi_{216000}(10121,\cdot) χ216000(10361,)\chi_{216000}(10361,\cdot) χ216000(10841,)\chi_{216000}(10841,\cdot) χ216000(11081,)\chi_{216000}(11081,\cdot) χ216000(11561,)\chi_{216000}(11561,\cdot) χ216000(12281,)\chi_{216000}(12281,\cdot) χ216000(12521,)\chi_{216000}(12521,\cdot) χ216000(13241,)\chi_{216000}(13241,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1800)\Q(\zeta_{1800})
Fixed field: Number field defined by a degree 1800 polynomial (not computed)

Values on generators

(114751,202501,136001,29377)(114751,202501,136001,29377)(1,e(38),e(118),e(1825))(1,e\left(\frac{3}{8}\right),e\left(\frac{1}{18}\right),e\left(\frac{18}{25}\right))

First values

aa 1-11177111113131717191923232929313137374141
χ216000(5321,a) \chi_{ 216000 }(5321, a) 1-111e(151180)e\left(\frac{151}{180}\right)e(5711800)e\left(\frac{571}{1800}\right)e(2691800)e\left(\frac{269}{1800}\right)e(6775)e\left(\frac{67}{75}\right)e(151600)e\left(\frac{151}{600}\right)e(163900)e\left(\frac{163}{900}\right)e(14771800)e\left(\frac{1477}{1800}\right)e(151225)e\left(\frac{151}{225}\right)e(353600)e\left(\frac{353}{600}\right)e(787900)e\left(\frac{787}{900}\right)
sage: chi.jacobi_sum(n)
 
χ216000(5321,a)   \chi_{ 216000 }(5321,a) \; at   a=\;a = e.g. 2