Properties

Label 253.145
Modulus 253253
Conductor 253253
Order 110110
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([11,95]))
 
pari: [g,chi] = znchar(Mod(145,253))
 

Basic properties

Modulus: 253253
Conductor: 253253
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 110110
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.n

χ253(7,)\chi_{253}(7,\cdot) χ253(17,)\chi_{253}(17,\cdot) χ253(19,)\chi_{253}(19,\cdot) χ253(28,)\chi_{253}(28,\cdot) χ253(30,)\chi_{253}(30,\cdot) χ253(40,)\chi_{253}(40,\cdot) χ253(51,)\chi_{253}(51,\cdot) χ253(57,)\chi_{253}(57,\cdot) χ253(61,)\chi_{253}(61,\cdot) χ253(63,)\chi_{253}(63,\cdot) χ253(74,)\chi_{253}(74,\cdot) χ253(79,)\chi_{253}(79,\cdot) χ253(83,)\chi_{253}(83,\cdot) χ253(84,)\chi_{253}(84,\cdot) χ253(90,)\chi_{253}(90,\cdot) χ253(106,)\chi_{253}(106,\cdot) χ253(107,)\chi_{253}(107,\cdot) χ253(112,)\chi_{253}(112,\cdot) χ253(129,)\chi_{253}(129,\cdot) χ253(134,)\chi_{253}(134,\cdot) χ253(145,)\chi_{253}(145,\cdot) χ253(149,)\chi_{253}(149,\cdot) χ253(171,)\chi_{253}(171,\cdot) χ253(172,)\chi_{253}(172,\cdot) χ253(178,)\chi_{253}(178,\cdot) χ253(182,)\chi_{253}(182,\cdot) χ253(189,)\chi_{253}(189,\cdot) χ253(194,)\chi_{253}(194,\cdot) χ253(195,)\chi_{253}(195,\cdot) χ253(204,)\chi_{253}(204,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(24,166)(24,166)(e(110),e(1922))(e\left(\frac{1}{10}\right),e\left(\frac{19}{22}\right))

First values

aa 1-111223344556677889910101212
χ253(145,a) \chi_{ 253 }(145, a) 1111e(91110)e\left(\frac{91}{110}\right)e(3455)e\left(\frac{34}{55}\right)e(3655)e\left(\frac{36}{55}\right)e(29110)e\left(\frac{29}{110}\right)e(49110)e\left(\frac{49}{110}\right)e(655)e\left(\frac{6}{55}\right)e(53110)e\left(\frac{53}{110}\right)e(1355)e\left(\frac{13}{55}\right)e(111)e\left(\frac{1}{11}\right)e(311)e\left(\frac{3}{11}\right)
sage: chi.jacobi_sum(n)
 
χ253(145,a)   \chi_{ 253 }(145,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ253(145,))   \tau_{ a }( \chi_{ 253 }(145,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ253(145,),χ253(n,))   J(\chi_{ 253 }(145,·),\chi_{ 253 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ253(145,))  K(a,b,\chi_{ 253 }(145,·)) \; at   a,b=\; a,b = e.g. 1,2