from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(253, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([99,5]))
pari: [g,chi] = znchar(Mod(28,253))
χ253(7,⋅)
χ253(17,⋅)
χ253(19,⋅)
χ253(28,⋅)
χ253(30,⋅)
χ253(40,⋅)
χ253(51,⋅)
χ253(57,⋅)
χ253(61,⋅)
χ253(63,⋅)
χ253(74,⋅)
χ253(79,⋅)
χ253(83,⋅)
χ253(84,⋅)
χ253(90,⋅)
χ253(106,⋅)
χ253(107,⋅)
χ253(112,⋅)
χ253(129,⋅)
χ253(134,⋅)
χ253(145,⋅)
χ253(149,⋅)
χ253(171,⋅)
χ253(172,⋅)
χ253(178,⋅)
χ253(182,⋅)
χ253(189,⋅)
χ253(194,⋅)
χ253(195,⋅)
χ253(204,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(24,166) → (e(109),e(221))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 |
χ253(28,a) |
1 | 1 | e(110109) | e(5551) | e(5554) | e(11071) | e(110101) | e(559) | e(110107) | e(5547) | e(117) | e(1110) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)