Properties

Label 253.194
Modulus $253$
Conductor $253$
Order $110$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(253, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([77,15]))
 
pari: [g,chi] = znchar(Mod(194,253))
 

Basic properties

Modulus: \(253\)
Conductor: \(253\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 253.n

\(\chi_{253}(7,\cdot)\) \(\chi_{253}(17,\cdot)\) \(\chi_{253}(19,\cdot)\) \(\chi_{253}(28,\cdot)\) \(\chi_{253}(30,\cdot)\) \(\chi_{253}(40,\cdot)\) \(\chi_{253}(51,\cdot)\) \(\chi_{253}(57,\cdot)\) \(\chi_{253}(61,\cdot)\) \(\chi_{253}(63,\cdot)\) \(\chi_{253}(74,\cdot)\) \(\chi_{253}(79,\cdot)\) \(\chi_{253}(83,\cdot)\) \(\chi_{253}(84,\cdot)\) \(\chi_{253}(90,\cdot)\) \(\chi_{253}(106,\cdot)\) \(\chi_{253}(107,\cdot)\) \(\chi_{253}(112,\cdot)\) \(\chi_{253}(129,\cdot)\) \(\chi_{253}(134,\cdot)\) \(\chi_{253}(145,\cdot)\) \(\chi_{253}(149,\cdot)\) \(\chi_{253}(171,\cdot)\) \(\chi_{253}(172,\cdot)\) \(\chi_{253}(178,\cdot)\) \(\chi_{253}(182,\cdot)\) \(\chi_{253}(189,\cdot)\) \(\chi_{253}(194,\cdot)\) \(\chi_{253}(195,\cdot)\) \(\chi_{253}(204,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((24,166)\) → \((e\left(\frac{7}{10}\right),e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 253 }(194, a) \) \(1\)\(1\)\(e\left(\frac{107}{110}\right)\)\(e\left(\frac{43}{55}\right)\)\(e\left(\frac{52}{55}\right)\)\(e\left(\frac{103}{110}\right)\)\(e\left(\frac{83}{110}\right)\)\(e\left(\frac{27}{55}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{31}{55}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{8}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 253 }(194,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 253 }(194,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 253 }(194,·),\chi_{ 253 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 253 }(194,·)) \;\) at \(\; a,b = \) e.g. 1,2