Properties

Label 259200.19543
Modulus $259200$
Conductor $25920$
Order $432$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(432))
 
M = H._module
 
chi = DirichletCharacter(H, M([216,405,112,324]))
 
pari: [g,chi] = znchar(Mod(19543,259200))
 

Basic properties

Modulus: \(259200\)
Conductor: \(25920\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(432\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{25920}(11443,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.vg

\(\chi_{259200}(7,\cdot)\) \(\chi_{259200}(2407,\cdot)\) \(\chi_{259200}(2743,\cdot)\) \(\chi_{259200}(5143,\cdot)\) \(\chi_{259200}(7207,\cdot)\) \(\chi_{259200}(9607,\cdot)\) \(\chi_{259200}(9943,\cdot)\) \(\chi_{259200}(12343,\cdot)\) \(\chi_{259200}(14407,\cdot)\) \(\chi_{259200}(16807,\cdot)\) \(\chi_{259200}(17143,\cdot)\) \(\chi_{259200}(19543,\cdot)\) \(\chi_{259200}(21607,\cdot)\) \(\chi_{259200}(24007,\cdot)\) \(\chi_{259200}(24343,\cdot)\) \(\chi_{259200}(26743,\cdot)\) \(\chi_{259200}(28807,\cdot)\) \(\chi_{259200}(31207,\cdot)\) \(\chi_{259200}(31543,\cdot)\) \(\chi_{259200}(33943,\cdot)\) \(\chi_{259200}(36007,\cdot)\) \(\chi_{259200}(38407,\cdot)\) \(\chi_{259200}(38743,\cdot)\) \(\chi_{259200}(41143,\cdot)\) \(\chi_{259200}(43207,\cdot)\) \(\chi_{259200}(45607,\cdot)\) \(\chi_{259200}(45943,\cdot)\) \(\chi_{259200}(48343,\cdot)\) \(\chi_{259200}(50407,\cdot)\) \(\chi_{259200}(52807,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{432})$
Fixed field: Number field defined by a degree 432 polynomial (not computed)

Values on generators

\((157951,202501,6401,72577)\) → \((-1,e\left(\frac{15}{16}\right),e\left(\frac{7}{27}\right),-i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 259200 }(19543, a) \) \(1\)\(1\)\(e\left(\frac{167}{216}\right)\)\(e\left(\frac{241}{432}\right)\)\(e\left(\frac{167}{432}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{1}{144}\right)\)\(e\left(\frac{157}{216}\right)\)\(e\left(\frac{175}{432}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{11}{144}\right)\)\(e\left(\frac{187}{216}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 259200 }(19543,a) \;\) at \(\;a = \) e.g. 2