Properties

Label 259200.21607
Modulus 259200259200
Conductor 2592025920
Order 432432
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(432))
 
M = H._module
 
chi = DirichletCharacter(H, M([216,27,416,108]))
 
pari: [g,chi] = znchar(Mod(21607,259200))
 

Basic properties

Modulus: 259200259200
Conductor: 2592025920
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 432432
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25920(23227,)\chi_{25920}(23227,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.vg

χ259200(7,)\chi_{259200}(7,\cdot) χ259200(2407,)\chi_{259200}(2407,\cdot) χ259200(2743,)\chi_{259200}(2743,\cdot) χ259200(5143,)\chi_{259200}(5143,\cdot) χ259200(7207,)\chi_{259200}(7207,\cdot) χ259200(9607,)\chi_{259200}(9607,\cdot) χ259200(9943,)\chi_{259200}(9943,\cdot) χ259200(12343,)\chi_{259200}(12343,\cdot) χ259200(14407,)\chi_{259200}(14407,\cdot) χ259200(16807,)\chi_{259200}(16807,\cdot) χ259200(17143,)\chi_{259200}(17143,\cdot) χ259200(19543,)\chi_{259200}(19543,\cdot) χ259200(21607,)\chi_{259200}(21607,\cdot) χ259200(24007,)\chi_{259200}(24007,\cdot) χ259200(24343,)\chi_{259200}(24343,\cdot) χ259200(26743,)\chi_{259200}(26743,\cdot) χ259200(28807,)\chi_{259200}(28807,\cdot) χ259200(31207,)\chi_{259200}(31207,\cdot) χ259200(31543,)\chi_{259200}(31543,\cdot) χ259200(33943,)\chi_{259200}(33943,\cdot) χ259200(36007,)\chi_{259200}(36007,\cdot) χ259200(38407,)\chi_{259200}(38407,\cdot) χ259200(38743,)\chi_{259200}(38743,\cdot) χ259200(41143,)\chi_{259200}(41143,\cdot) χ259200(43207,)\chi_{259200}(43207,\cdot) χ259200(45607,)\chi_{259200}(45607,\cdot) χ259200(45943,)\chi_{259200}(45943,\cdot) χ259200(48343,)\chi_{259200}(48343,\cdot) χ259200(50407,)\chi_{259200}(50407,\cdot) χ259200(52807,)\chi_{259200}(52807,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ432)\Q(\zeta_{432})
Fixed field: Number field defined by a degree 432 polynomial (not computed)

Values on generators

(157951,202501,6401,72577)(157951,202501,6401,72577)(1,e(116),e(2627),i)(-1,e\left(\frac{1}{16}\right),e\left(\frac{26}{27}\right),i)

First values

aa 1-11177111113131717191923232929313137374141
χ259200(21607,a) \chi_{ 259200 }(21607, a) 1111e(169216)e\left(\frac{169}{216}\right)e(143432)e\left(\frac{143}{432}\right)e(169432)e\left(\frac{169}{432}\right)e(79)e\left(\frac{7}{9}\right)e(95144)e\left(\frac{95}{144}\right)e(155216)e\left(\frac{155}{216}\right)e(353432)e\left(\frac{353}{432}\right)e(727)e\left(\frac{7}{27}\right)e(37144)e\left(\frac{37}{144}\right)e(197216)e\left(\frac{197}{216}\right)
sage: chi.jacobi_sum(n)
 
χ259200(21607,a)   \chi_{ 259200 }(21607,a) \; at   a=\;a = e.g. 2