from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(259200, base_ring=CyclotomicField(432))
M = H._module
chi = DirichletCharacter(H, M([216,27,416,108]))
pari: [g,chi] = znchar(Mod(21607,259200))
χ259200(7,⋅)
χ259200(2407,⋅)
χ259200(2743,⋅)
χ259200(5143,⋅)
χ259200(7207,⋅)
χ259200(9607,⋅)
χ259200(9943,⋅)
χ259200(12343,⋅)
χ259200(14407,⋅)
χ259200(16807,⋅)
χ259200(17143,⋅)
χ259200(19543,⋅)
χ259200(21607,⋅)
χ259200(24007,⋅)
χ259200(24343,⋅)
χ259200(26743,⋅)
χ259200(28807,⋅)
χ259200(31207,⋅)
χ259200(31543,⋅)
χ259200(33943,⋅)
χ259200(36007,⋅)
χ259200(38407,⋅)
χ259200(38743,⋅)
χ259200(41143,⋅)
χ259200(43207,⋅)
χ259200(45607,⋅)
χ259200(45943,⋅)
χ259200(48343,⋅)
χ259200(50407,⋅)
χ259200(52807,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(157951,202501,6401,72577) → (−1,e(161),e(2726),i)
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 |
χ259200(21607,a) |
1 | 1 | e(216169) | e(432143) | e(432169) | e(97) | e(14495) | e(216155) | e(432353) | e(277) | e(14437) | e(216197) |