Properties

Label 259200.36007
Modulus 259200259200
Conductor 2592025920
Order 432432
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(259200, base_ring=CyclotomicField(432))
 
M = H._module
 
chi = DirichletCharacter(H, M([216,243,176,108]))
 
pari: [g,chi] = znchar(Mod(36007,259200))
 

Basic properties

Modulus: 259200259200
Conductor: 2592025920
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 432432
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ25920(24667,)\chi_{25920}(24667,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 259200.vg

χ259200(7,)\chi_{259200}(7,\cdot) χ259200(2407,)\chi_{259200}(2407,\cdot) χ259200(2743,)\chi_{259200}(2743,\cdot) χ259200(5143,)\chi_{259200}(5143,\cdot) χ259200(7207,)\chi_{259200}(7207,\cdot) χ259200(9607,)\chi_{259200}(9607,\cdot) χ259200(9943,)\chi_{259200}(9943,\cdot) χ259200(12343,)\chi_{259200}(12343,\cdot) χ259200(14407,)\chi_{259200}(14407,\cdot) χ259200(16807,)\chi_{259200}(16807,\cdot) χ259200(17143,)\chi_{259200}(17143,\cdot) χ259200(19543,)\chi_{259200}(19543,\cdot) χ259200(21607,)\chi_{259200}(21607,\cdot) χ259200(24007,)\chi_{259200}(24007,\cdot) χ259200(24343,)\chi_{259200}(24343,\cdot) χ259200(26743,)\chi_{259200}(26743,\cdot) χ259200(28807,)\chi_{259200}(28807,\cdot) χ259200(31207,)\chi_{259200}(31207,\cdot) χ259200(31543,)\chi_{259200}(31543,\cdot) χ259200(33943,)\chi_{259200}(33943,\cdot) χ259200(36007,)\chi_{259200}(36007,\cdot) χ259200(38407,)\chi_{259200}(38407,\cdot) χ259200(38743,)\chi_{259200}(38743,\cdot) χ259200(41143,)\chi_{259200}(41143,\cdot) χ259200(43207,)\chi_{259200}(43207,\cdot) χ259200(45607,)\chi_{259200}(45607,\cdot) χ259200(45943,)\chi_{259200}(45943,\cdot) χ259200(48343,)\chi_{259200}(48343,\cdot) χ259200(50407,)\chi_{259200}(50407,\cdot) χ259200(52807,)\chi_{259200}(52807,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ432)\Q(\zeta_{432})
Fixed field: Number field defined by a degree 432 polynomial (not computed)

Values on generators

(157951,202501,6401,72577)(157951,202501,6401,72577)(1,e(916),e(1127),i)(-1,e\left(\frac{9}{16}\right),e\left(\frac{11}{27}\right),i)

First values

aa 1-11177111113131717191923232929313137374141
χ259200(36007,a) \chi_{ 259200 }(36007, a) 1111e(193216)e\left(\frac{193}{216}\right)e(263432)e\left(\frac{263}{432}\right)e(193432)e\left(\frac{193}{432}\right)e(49)e\left(\frac{4}{9}\right)e(71144)e\left(\frac{71}{144}\right)e(131216)e\left(\frac{131}{216}\right)e(329432)e\left(\frac{329}{432}\right)e(427)e\left(\frac{4}{27}\right)e(61144)e\left(\frac{61}{144}\right)e(101216)e\left(\frac{101}{216}\right)
sage: chi.jacobi_sum(n)
 
χ259200(36007,a)   \chi_{ 259200 }(36007,a) \; at   a=\;a = e.g. 2