Properties

Label 28900.1439
Modulus 2890028900
Conductor 2890028900
Order 13601360
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
 
M = H._module
 
chi = DirichletCharacter(H, M([680,408,275]))
 
pari: [g,chi] = znchar(Mod(1439,28900))
 

Basic properties

Modulus: 2890028900
Conductor: 2890028900
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 13601360
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fk

χ28900(39,)\chi_{28900}(39,\cdot) χ28900(79,)\chi_{28900}(79,\cdot) χ28900(139,)\chi_{28900}(139,\cdot) χ28900(159,)\chi_{28900}(159,\cdot) χ28900(279,)\chi_{28900}(279,\cdot) χ28900(379,)\chi_{28900}(379,\cdot) χ28900(419,)\chi_{28900}(419,\cdot) χ28900(439,)\chi_{28900}(439,\cdot) χ28900(479,)\chi_{28900}(479,\cdot) χ28900(539,)\chi_{28900}(539,\cdot) χ28900(619,)\chi_{28900}(619,\cdot) χ28900(639,)\chi_{28900}(639,\cdot) χ28900(719,)\chi_{28900}(719,\cdot) χ28900(759,)\chi_{28900}(759,\cdot) χ28900(779,)\chi_{28900}(779,\cdot) χ28900(819,)\chi_{28900}(819,\cdot) χ28900(839,)\chi_{28900}(839,\cdot) χ28900(879,)\chi_{28900}(879,\cdot) χ28900(959,)\chi_{28900}(959,\cdot) χ28900(979,)\chi_{28900}(979,\cdot) χ28900(1059,)\chi_{28900}(1059,\cdot) χ28900(1119,)\chi_{28900}(1119,\cdot) χ28900(1159,)\chi_{28900}(1159,\cdot) χ28900(1179,)\chi_{28900}(1179,\cdot) χ28900(1219,)\chi_{28900}(1219,\cdot) χ28900(1319,)\chi_{28900}(1319,\cdot) χ28900(1439,)\chi_{28900}(1439,\cdot) χ28900(1459,)\chi_{28900}(1459,\cdot) χ28900(1519,)\chi_{28900}(1519,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1360)\Q(\zeta_{1360})
Fixed field: Number field defined by a degree 1360 polynomial (not computed)

Values on generators

(14451,24277,23701)(14451,24277,23701)(1,e(310),e(55272))(-1,e\left(\frac{3}{10}\right),e\left(\frac{55}{272}\right))

First values

aa 1-1113377991111131319192121232327272929
χ28900(1439,a) \chi_{ 28900 }(1439, a) 1111e(10911360)e\left(\frac{1091}{1360}\right)e(93272)e\left(\frac{93}{272}\right)e(411680)e\left(\frac{411}{680}\right)e(12931360)e\left(\frac{1293}{1360}\right)e(113340)e\left(\frac{113}{340}\right)e(497680)e\left(\frac{497}{680}\right)e(49340)e\left(\frac{49}{340}\right)e(12131360)e\left(\frac{1213}{1360}\right)e(5531360)e\left(\frac{553}{1360}\right)e(11911360)e\left(\frac{1191}{1360}\right)
sage: chi.jacobi_sum(n)
 
χ28900(1439,a)   \chi_{ 28900 }(1439,a) \; at   a=\;a = e.g. 2