Properties

Label 28900.39
Modulus $28900$
Conductor $28900$
Order $1360$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
 
M = H._module
 
chi = DirichletCharacter(H, M([680,408,985]))
 
pari: [g,chi] = znchar(Mod(39,28900))
 

Basic properties

Modulus: \(28900\)
Conductor: \(28900\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1360\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 28900.fk

\(\chi_{28900}(39,\cdot)\) \(\chi_{28900}(79,\cdot)\) \(\chi_{28900}(139,\cdot)\) \(\chi_{28900}(159,\cdot)\) \(\chi_{28900}(279,\cdot)\) \(\chi_{28900}(379,\cdot)\) \(\chi_{28900}(419,\cdot)\) \(\chi_{28900}(439,\cdot)\) \(\chi_{28900}(479,\cdot)\) \(\chi_{28900}(539,\cdot)\) \(\chi_{28900}(619,\cdot)\) \(\chi_{28900}(639,\cdot)\) \(\chi_{28900}(719,\cdot)\) \(\chi_{28900}(759,\cdot)\) \(\chi_{28900}(779,\cdot)\) \(\chi_{28900}(819,\cdot)\) \(\chi_{28900}(839,\cdot)\) \(\chi_{28900}(879,\cdot)\) \(\chi_{28900}(959,\cdot)\) \(\chi_{28900}(979,\cdot)\) \(\chi_{28900}(1059,\cdot)\) \(\chi_{28900}(1119,\cdot)\) \(\chi_{28900}(1159,\cdot)\) \(\chi_{28900}(1179,\cdot)\) \(\chi_{28900}(1219,\cdot)\) \(\chi_{28900}(1319,\cdot)\) \(\chi_{28900}(1439,\cdot)\) \(\chi_{28900}(1459,\cdot)\) \(\chi_{28900}(1519,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1360})$
Fixed field: Number field defined by a degree 1360 polynomial (not computed)

Values on generators

\((14451,24277,23701)\) → \((-1,e\left(\frac{3}{10}\right),e\left(\frac{197}{272}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(19\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 28900 }(39, a) \) \(1\)\(1\)\(e\left(\frac{441}{1360}\right)\)\(e\left(\frac{71}{272}\right)\)\(e\left(\frac{441}{680}\right)\)\(e\left(\frac{1303}{1360}\right)\)\(e\left(\frac{223}{340}\right)\)\(e\left(\frac{27}{680}\right)\)\(e\left(\frac{199}{340}\right)\)\(e\left(\frac{423}{1360}\right)\)\(e\left(\frac{1323}{1360}\right)\)\(e\left(\frac{181}{1360}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 28900 }(39,a) \;\) at \(\;a = \) e.g. 2