from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(28900, base_ring=CyclotomicField(1360))
M = H._module
chi = DirichletCharacter(H, M([680,136,495]))
pari: [g,chi] = znchar(Mod(979,28900))
χ28900(39,⋅)
χ28900(79,⋅)
χ28900(139,⋅)
χ28900(159,⋅)
χ28900(279,⋅)
χ28900(379,⋅)
χ28900(419,⋅)
χ28900(439,⋅)
χ28900(479,⋅)
χ28900(539,⋅)
χ28900(619,⋅)
χ28900(639,⋅)
χ28900(719,⋅)
χ28900(759,⋅)
χ28900(779,⋅)
χ28900(819,⋅)
χ28900(839,⋅)
χ28900(879,⋅)
χ28900(959,⋅)
χ28900(979,⋅)
χ28900(1059,⋅)
χ28900(1119,⋅)
χ28900(1159,⋅)
χ28900(1179,⋅)
χ28900(1219,⋅)
χ28900(1319,⋅)
χ28900(1439,⋅)
χ28900(1459,⋅)
χ28900(1519,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(14451,24277,23701) → (−1,e(101),e(27299))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 19 | 21 | 23 | 27 | 29 |
χ28900(979,a) |
1 | 1 | e(1360767) | e(272113) | e(68087) | e(1360641) | e(34081) | e(680269) | e(340333) | e(13601041) | e(1360941) | e(1360947) |