sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3040, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([0,9,54,44]))
pari:[g,chi] = znchar(Mod(1573,3040))
Modulus: | 3040 | |
Conductor: | 3040 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 72 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ3040(53,⋅)
χ3040(317,⋅)
χ3040(477,⋅)
χ3040(637,⋅)
χ3040(717,⋅)
χ3040(773,⋅)
χ3040(877,⋅)
χ3040(933,⋅)
χ3040(1093,⋅)
χ3040(1117,⋅)
χ3040(1173,⋅)
χ3040(1333,⋅)
χ3040(1573,⋅)
χ3040(1837,⋅)
χ3040(1997,⋅)
χ3040(2157,⋅)
χ3040(2237,⋅)
χ3040(2293,⋅)
χ3040(2397,⋅)
χ3040(2453,⋅)
χ3040(2613,⋅)
χ3040(2637,⋅)
χ3040(2693,⋅)
χ3040(2853,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,2661,1217,1921) → (1,e(81),−i,e(1811))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 21 | 23 | 27 | 29 |
χ3040(1573,a) |
1 | 1 | e(7241) | e(32) | e(365) | e(2423) | e(7213) | e(3613) | e(7217) | e(92) | e(2417) | e(7219) |
sage:chi.jacobi_sum(n)