Properties

Label 3040.877
Modulus $3040$
Conductor $3040$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,63,18,52]))
 
pari: [g,chi] = znchar(Mod(877,3040))
 

Basic properties

Modulus: \(3040\)
Conductor: \(3040\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3040.fy

\(\chi_{3040}(53,\cdot)\) \(\chi_{3040}(317,\cdot)\) \(\chi_{3040}(477,\cdot)\) \(\chi_{3040}(637,\cdot)\) \(\chi_{3040}(717,\cdot)\) \(\chi_{3040}(773,\cdot)\) \(\chi_{3040}(877,\cdot)\) \(\chi_{3040}(933,\cdot)\) \(\chi_{3040}(1093,\cdot)\) \(\chi_{3040}(1117,\cdot)\) \(\chi_{3040}(1173,\cdot)\) \(\chi_{3040}(1333,\cdot)\) \(\chi_{3040}(1573,\cdot)\) \(\chi_{3040}(1837,\cdot)\) \(\chi_{3040}(1997,\cdot)\) \(\chi_{3040}(2157,\cdot)\) \(\chi_{3040}(2237,\cdot)\) \(\chi_{3040}(2293,\cdot)\) \(\chi_{3040}(2397,\cdot)\) \(\chi_{3040}(2453,\cdot)\) \(\chi_{3040}(2613,\cdot)\) \(\chi_{3040}(2637,\cdot)\) \(\chi_{3040}(2693,\cdot)\) \(\chi_{3040}(2853,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((191,2661,1217,1921)\) → \((1,e\left(\frac{7}{8}\right),i,e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(21\)\(23\)\(27\)\(29\)
\( \chi_{ 3040 }(877, a) \) \(1\)\(1\)\(e\left(\frac{55}{72}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{35}{72}\right)\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{7}{72}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{29}{72}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3040 }(877,a) \;\) at \(\;a = \) e.g. 2