Properties

Label 3040.fy
Modulus $3040$
Conductor $3040$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3040, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,45,54,44]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(53,3040))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3040\)
Conductor: \(3040\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(7\) \(9\) \(11\) \(13\) \(17\) \(21\) \(23\) \(27\) \(29\)
\(\chi_{3040}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{55}{72}\right)\)
\(\chi_{3040}(317,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{25}{72}\right)\)
\(\chi_{3040}(477,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{41}{72}\right)\)
\(\chi_{3040}(637,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{49}{72}\right)\)
\(\chi_{3040}(717,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{53}{72}\right)\)
\(\chi_{3040}(773,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{43}{72}\right)\)
\(\chi_{3040}(877,\cdot)\) \(1\) \(1\) \(e\left(\frac{55}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{29}{72}\right)\)
\(\chi_{3040}(933,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{59}{72}\right)\)
\(\chi_{3040}(1093,\cdot)\) \(1\) \(1\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{67}{72}\right)\)
\(\chi_{3040}(1117,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{35}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{72}\right)\)
\(\chi_{3040}(1173,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{71}{72}\right)\)
\(\chi_{3040}(1333,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{47}{72}\right)\)
\(\chi_{3040}(1573,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{17}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{72}\right)\)
\(\chi_{3040}(1837,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{61}{72}\right)\)
\(\chi_{3040}(1997,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{72}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{31}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{72}\right)\)
\(\chi_{3040}(2157,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{13}{72}\right)\)
\(\chi_{3040}(2237,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{17}{72}\right)\)
\(\chi_{3040}(2293,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{7}{72}\right)\)
\(\chi_{3040}(2397,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{43}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{65}{72}\right)\)
\(\chi_{3040}(2453,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{65}{72}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{13}{72}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{23}{72}\right)\)
\(\chi_{3040}(2613,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{31}{72}\right)\)
\(\chi_{3040}(2637,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{72}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{67}{72}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{71}{72}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{37}{72}\right)\)
\(\chi_{3040}(2693,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{72}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{35}{72}\right)\)
\(\chi_{3040}(2853,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{72}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{53}{72}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{25}{72}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{11}{72}\right)\)