Properties

Label 3267.1684
Modulus $3267$
Conductor $1089$
Order $33$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([22,12]))
 
pari: [g,chi] = znchar(Mod(1684,3267))
 

Basic properties

Modulus: \(3267\)
Conductor: \(1089\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(33\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1089}(958,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 3267.y

\(\chi_{3267}(100,\cdot)\) \(\chi_{3267}(199,\cdot)\) \(\chi_{3267}(397,\cdot)\) \(\chi_{3267}(496,\cdot)\) \(\chi_{3267}(694,\cdot)\) \(\chi_{3267}(793,\cdot)\) \(\chi_{3267}(991,\cdot)\) \(\chi_{3267}(1288,\cdot)\) \(\chi_{3267}(1387,\cdot)\) \(\chi_{3267}(1585,\cdot)\) \(\chi_{3267}(1684,\cdot)\) \(\chi_{3267}(1882,\cdot)\) \(\chi_{3267}(1981,\cdot)\) \(\chi_{3267}(2278,\cdot)\) \(\chi_{3267}(2476,\cdot)\) \(\chi_{3267}(2575,\cdot)\) \(\chi_{3267}(2773,\cdot)\) \(\chi_{3267}(2872,\cdot)\) \(\chi_{3267}(3070,\cdot)\) \(\chi_{3267}(3169,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 33 polynomial

Values on generators

\((3026,244)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{2}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(13\)\(14\)\(16\)\(17\)
\( \chi_{ 3267 }(1684, a) \) \(1\)\(1\)\(e\left(\frac{17}{33}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{4}{33}\right)\)\(e\left(\frac{20}{33}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{1}{33}\right)\)\(e\left(\frac{4}{33}\right)\)\(e\left(\frac{2}{33}\right)\)\(e\left(\frac{10}{11}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 3267 }(1684,a) \;\) at \(\;a = \) e.g. 2