Properties

Label 3267.y
Modulus $3267$
Conductor $1089$
Order $33$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3267, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([44,24]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(100,3267))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(3267\)
Conductor: \(1089\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(33\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 1089.u
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 33 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(13\) \(14\) \(16\) \(17\)
\(\chi_{3267}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{3267}(199,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{3267}(397,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{3267}(496,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{3267}(694,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{3267}(793,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{3267}(991,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{2}{11}\right)\)
\(\chi_{3267}(1288,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{7}{11}\right)\)
\(\chi_{3267}(1387,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{3267}(1585,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{33}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{1}{11}\right)\)
\(\chi_{3267}(1684,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{4}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{3267}(1882,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{2}{11}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{6}{11}\right)\)
\(\chi_{3267}(1981,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{33}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{8}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{7}{33}\right)\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{14}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{3267}(2278,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{9}{11}\right)\)
\(\chi_{3267}(2476,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{3}{11}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{2}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{5}{11}\right)\)
\(\chi_{3267}(2575,\cdot)\) \(1\) \(1\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{4}{11}\right)\) \(e\left(\frac{1}{11}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{10}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{3}{11}\right)\)
\(\chi_{3267}(2773,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{33}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{6}{11}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{23}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{13}{33}\right)\) \(e\left(\frac{10}{11}\right)\)
\(\chi_{3267}(2872,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{5}{33}\right)\) \(e\left(\frac{7}{11}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{1}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{8}{11}\right)\)
\(\chi_{3267}(3070,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{19}{33}\right)\) \(e\left(\frac{9}{11}\right)\) \(e\left(\frac{5}{11}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{17}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{4}{11}\right)\)
\(\chi_{3267}(3169,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{33}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{26}{33}\right)\) \(e\left(\frac{10}{11}\right)\) \(e\left(\frac{8}{11}\right)\) \(e\left(\frac{31}{33}\right)\) \(e\left(\frac{25}{33}\right)\) \(e\left(\frac{29}{33}\right)\) \(e\left(\frac{2}{11}\right)\)