from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,18]))
pari: [g,chi] = znchar(Mod(3070,3267))
Basic properties
Modulus: | \(3267\) | |
Conductor: | \(1089\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(33\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1089}(529,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | no | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 3267.y
\(\chi_{3267}(100,\cdot)\) \(\chi_{3267}(199,\cdot)\) \(\chi_{3267}(397,\cdot)\) \(\chi_{3267}(496,\cdot)\) \(\chi_{3267}(694,\cdot)\) \(\chi_{3267}(793,\cdot)\) \(\chi_{3267}(991,\cdot)\) \(\chi_{3267}(1288,\cdot)\) \(\chi_{3267}(1387,\cdot)\) \(\chi_{3267}(1585,\cdot)\) \(\chi_{3267}(1684,\cdot)\) \(\chi_{3267}(1882,\cdot)\) \(\chi_{3267}(1981,\cdot)\) \(\chi_{3267}(2278,\cdot)\) \(\chi_{3267}(2476,\cdot)\) \(\chi_{3267}(2575,\cdot)\) \(\chi_{3267}(2773,\cdot)\) \(\chi_{3267}(2872,\cdot)\) \(\chi_{3267}(3070,\cdot)\) \(\chi_{3267}(3169,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{33})\) |
Fixed field: | Number field defined by a degree 33 polynomial |
Values on generators
\((3026,244)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{3}{11}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(13\) | \(14\) | \(16\) | \(17\) |
\( \chi_{ 3267 }(3070, a) \) | \(1\) | \(1\) | \(e\left(\frac{31}{33}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{17}{33}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{4}{11}\right)\) |
sage: chi.jacobi_sum(n)