sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3267, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([44,18]))
pari:[g,chi] = znchar(Mod(3070,3267))
χ3267(100,⋅)
χ3267(199,⋅)
χ3267(397,⋅)
χ3267(496,⋅)
χ3267(694,⋅)
χ3267(793,⋅)
χ3267(991,⋅)
χ3267(1288,⋅)
χ3267(1387,⋅)
χ3267(1585,⋅)
χ3267(1684,⋅)
χ3267(1882,⋅)
χ3267(1981,⋅)
χ3267(2278,⋅)
χ3267(2476,⋅)
χ3267(2575,⋅)
χ3267(2773,⋅)
χ3267(2872,⋅)
χ3267(3070,⋅)
χ3267(3169,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3026,244) → (e(32),e(113))
a |
−1 | 1 | 2 | 4 | 5 | 7 | 8 | 10 | 13 | 14 | 16 | 17 |
χ3267(3070,a) |
1 | 1 | e(3331) | e(3329) | e(3317) | e(3319) | e(119) | e(115) | e(3329) | e(3317) | e(3325) | e(114) |
sage:chi.jacobi_sum(n)