from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(36864, base_ring=CyclotomicField(1024))
M = H._module
chi = DirichletCharacter(H, M([0,1,0]))
pari: [g,chi] = znchar(Mod(20485,36864))
χ36864(37,⋅)
χ36864(109,⋅)
χ36864(181,⋅)
χ36864(253,⋅)
χ36864(325,⋅)
χ36864(397,⋅)
χ36864(469,⋅)
χ36864(541,⋅)
χ36864(613,⋅)
χ36864(685,⋅)
χ36864(757,⋅)
χ36864(829,⋅)
χ36864(901,⋅)
χ36864(973,⋅)
χ36864(1045,⋅)
χ36864(1117,⋅)
χ36864(1189,⋅)
χ36864(1261,⋅)
χ36864(1333,⋅)
χ36864(1405,⋅)
χ36864(1477,⋅)
χ36864(1549,⋅)
χ36864(1621,⋅)
χ36864(1693,⋅)
χ36864(1765,⋅)
χ36864(1837,⋅)
χ36864(1909,⋅)
χ36864(1981,⋅)
χ36864(2053,⋅)
χ36864(2125,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(8191,20485,4097) → (1,e(10241),1)
a |
−1 | 1 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 25 | 29 | 31 |
χ36864(20485,a) |
1 | 1 | e(10241) | e(512357) | e(1024213) | e(10241007) | e(256103) | e(1024919) | e(51271) | e(5121) | e(1024891) | e(12849) |