Properties

Label 36864.901
Modulus $36864$
Conductor $4096$
Order $1024$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36864, base_ring=CyclotomicField(1024))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,161,0]))
 
pari: [g,chi] = znchar(Mod(901,36864))
 

Basic properties

Modulus: \(36864\)
Conductor: \(4096\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(1024\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4096}(901,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 36864.cz

\(\chi_{36864}(37,\cdot)\) \(\chi_{36864}(109,\cdot)\) \(\chi_{36864}(181,\cdot)\) \(\chi_{36864}(253,\cdot)\) \(\chi_{36864}(325,\cdot)\) \(\chi_{36864}(397,\cdot)\) \(\chi_{36864}(469,\cdot)\) \(\chi_{36864}(541,\cdot)\) \(\chi_{36864}(613,\cdot)\) \(\chi_{36864}(685,\cdot)\) \(\chi_{36864}(757,\cdot)\) \(\chi_{36864}(829,\cdot)\) \(\chi_{36864}(901,\cdot)\) \(\chi_{36864}(973,\cdot)\) \(\chi_{36864}(1045,\cdot)\) \(\chi_{36864}(1117,\cdot)\) \(\chi_{36864}(1189,\cdot)\) \(\chi_{36864}(1261,\cdot)\) \(\chi_{36864}(1333,\cdot)\) \(\chi_{36864}(1405,\cdot)\) \(\chi_{36864}(1477,\cdot)\) \(\chi_{36864}(1549,\cdot)\) \(\chi_{36864}(1621,\cdot)\) \(\chi_{36864}(1693,\cdot)\) \(\chi_{36864}(1765,\cdot)\) \(\chi_{36864}(1837,\cdot)\) \(\chi_{36864}(1909,\cdot)\) \(\chi_{36864}(1981,\cdot)\) \(\chi_{36864}(2053,\cdot)\) \(\chi_{36864}(2125,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{1024})$
Fixed field: Number field defined by a degree 1024 polynomial (not computed)

Values on generators

\((8191,20485,4097)\) → \((1,e\left(\frac{161}{1024}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 36864 }(901, a) \) \(1\)\(1\)\(e\left(\frac{161}{1024}\right)\)\(e\left(\frac{133}{512}\right)\)\(e\left(\frac{501}{1024}\right)\)\(e\left(\frac{335}{1024}\right)\)\(e\left(\frac{199}{256}\right)\)\(e\left(\frac{503}{1024}\right)\)\(e\left(\frac{167}{512}\right)\)\(e\left(\frac{161}{512}\right)\)\(e\left(\frac{91}{1024}\right)\)\(e\left(\frac{81}{128}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 36864 }(901,a) \;\) at \(\;a = \) e.g. 2