Properties

Label 36864.613
Modulus 3686436864
Conductor 40964096
Order 10241024
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(36864, base_ring=CyclotomicField(1024))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,969,0]))
 
pari: [g,chi] = znchar(Mod(613,36864))
 

Basic properties

Modulus: 3686436864
Conductor: 40964096
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 10241024
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ4096(613,)\chi_{4096}(613,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 36864.cz

χ36864(37,)\chi_{36864}(37,\cdot) χ36864(109,)\chi_{36864}(109,\cdot) χ36864(181,)\chi_{36864}(181,\cdot) χ36864(253,)\chi_{36864}(253,\cdot) χ36864(325,)\chi_{36864}(325,\cdot) χ36864(397,)\chi_{36864}(397,\cdot) χ36864(469,)\chi_{36864}(469,\cdot) χ36864(541,)\chi_{36864}(541,\cdot) χ36864(613,)\chi_{36864}(613,\cdot) χ36864(685,)\chi_{36864}(685,\cdot) χ36864(757,)\chi_{36864}(757,\cdot) χ36864(829,)\chi_{36864}(829,\cdot) χ36864(901,)\chi_{36864}(901,\cdot) χ36864(973,)\chi_{36864}(973,\cdot) χ36864(1045,)\chi_{36864}(1045,\cdot) χ36864(1117,)\chi_{36864}(1117,\cdot) χ36864(1189,)\chi_{36864}(1189,\cdot) χ36864(1261,)\chi_{36864}(1261,\cdot) χ36864(1333,)\chi_{36864}(1333,\cdot) χ36864(1405,)\chi_{36864}(1405,\cdot) χ36864(1477,)\chi_{36864}(1477,\cdot) χ36864(1549,)\chi_{36864}(1549,\cdot) χ36864(1621,)\chi_{36864}(1621,\cdot) χ36864(1693,)\chi_{36864}(1693,\cdot) χ36864(1765,)\chi_{36864}(1765,\cdot) χ36864(1837,)\chi_{36864}(1837,\cdot) χ36864(1909,)\chi_{36864}(1909,\cdot) χ36864(1981,)\chi_{36864}(1981,\cdot) χ36864(2053,)\chi_{36864}(2053,\cdot) χ36864(2125,)\chi_{36864}(2125,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ1024)\Q(\zeta_{1024})
Fixed field: Number field defined by a degree 1024 polynomial (not computed)

Values on generators

(8191,20485,4097)(8191,20485,4097)(1,e(9691024),1)(1,e\left(\frac{969}{1024}\right),1)

First values

aa 1-111557711111313171719192323252529293131
χ36864(613,a) \chi_{ 36864 }(613, a) 1111e(9691024)e\left(\frac{969}{1024}\right)e(333512)e\left(\frac{333}{512}\right)e(5731024)e\left(\frac{573}{1024}\right)e(9351024)e\left(\frac{935}{1024}\right)e(223256)e\left(\frac{223}{256}\right)e(6551024)e\left(\frac{655}{1024}\right)e(191512)e\left(\frac{191}{512}\right)e(457512)e\left(\frac{457}{512}\right)e(1471024)e\left(\frac{147}{1024}\right)e(121128)e\left(\frac{121}{128}\right)
sage: chi.jacobi_sum(n)
 
χ36864(613,a)   \chi_{ 36864 }(613,a) \; at   a=\;a = e.g. 2