Properties

Label 405.236
Modulus $405$
Conductor $81$
Order $54$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([43,0]))
 
pari: [g,chi] = znchar(Mod(236,405))
 

Basic properties

Modulus: \(405\)
Conductor: \(81\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(54\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{81}(74,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.u

\(\chi_{405}(11,\cdot)\) \(\chi_{405}(41,\cdot)\) \(\chi_{405}(56,\cdot)\) \(\chi_{405}(86,\cdot)\) \(\chi_{405}(101,\cdot)\) \(\chi_{405}(131,\cdot)\) \(\chi_{405}(146,\cdot)\) \(\chi_{405}(176,\cdot)\) \(\chi_{405}(191,\cdot)\) \(\chi_{405}(221,\cdot)\) \(\chi_{405}(236,\cdot)\) \(\chi_{405}(266,\cdot)\) \(\chi_{405}(281,\cdot)\) \(\chi_{405}(311,\cdot)\) \(\chi_{405}(326,\cdot)\) \(\chi_{405}(356,\cdot)\) \(\chi_{405}(371,\cdot)\) \(\chi_{405}(401,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{27})\)
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

\((326,82)\) → \((e\left(\frac{43}{54}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 405 }(236, a) \) \(-1\)\(1\)\(e\left(\frac{43}{54}\right)\)\(e\left(\frac{16}{27}\right)\)\(e\left(\frac{20}{27}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{19}{54}\right)\)\(e\left(\frac{10}{27}\right)\)\(e\left(\frac{29}{54}\right)\)\(e\left(\frac{5}{27}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{2}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 405 }(236,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 405 }(236,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 405 }(236,·),\chi_{ 405 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 405 }(236,·)) \;\) at \(\; a,b = \) e.g. 1,2