Properties

Label 405.41
Modulus 405405
Conductor 8181
Order 5454
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([53,0]))
 
pari: [g,chi] = znchar(Mod(41,405))
 

Basic properties

Modulus: 405405
Conductor: 8181
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5454
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ81(41,)\chi_{81}(41,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.u

χ405(11,)\chi_{405}(11,\cdot) χ405(41,)\chi_{405}(41,\cdot) χ405(56,)\chi_{405}(56,\cdot) χ405(86,)\chi_{405}(86,\cdot) χ405(101,)\chi_{405}(101,\cdot) χ405(131,)\chi_{405}(131,\cdot) χ405(146,)\chi_{405}(146,\cdot) χ405(176,)\chi_{405}(176,\cdot) χ405(191,)\chi_{405}(191,\cdot) χ405(221,)\chi_{405}(221,\cdot) χ405(236,)\chi_{405}(236,\cdot) χ405(266,)\chi_{405}(266,\cdot) χ405(281,)\chi_{405}(281,\cdot) χ405(311,)\chi_{405}(311,\cdot) χ405(326,)\chi_{405}(326,\cdot) χ405(356,)\chi_{405}(356,\cdot) χ405(371,)\chi_{405}(371,\cdot) χ405(401,)\chi_{405}(401,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ27)\Q(\zeta_{27})
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

(326,82)(326,82)(e(5354),1)(e\left(\frac{53}{54}\right),1)

First values

aa 1-11122447788111113131414161617171919
χ405(41,a) \chi_{ 405 }(41, a) 1-111e(5354)e\left(\frac{53}{54}\right)e(2627)e\left(\frac{26}{27}\right)e(1927)e\left(\frac{19}{27}\right)e(1718)e\left(\frac{17}{18}\right)e(4154)e\left(\frac{41}{54}\right)e(2327)e\left(\frac{23}{27}\right)e(3754)e\left(\frac{37}{54}\right)e(2527)e\left(\frac{25}{27}\right)e(718)e\left(\frac{7}{18}\right)e(19)e\left(\frac{1}{9}\right)
sage: chi.jacobi_sum(n)
 
χ405(41,a)   \chi_{ 405 }(41,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(41,))   \tau_{ a }( \chi_{ 405 }(41,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(41,),χ405(n,))   J(\chi_{ 405 }(41,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(41,))  K(a,b,\chi_{ 405 }(41,·)) \; at   a,b=\; a,b = e.g. 1,2