Properties

Label 405.326
Modulus 405405
Conductor 8181
Order 5454
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(405, base_ring=CyclotomicField(54))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,0]))
 
pari: [g,chi] = znchar(Mod(326,405))
 

Basic properties

Modulus: 405405
Conductor: 8181
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5454
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ81(2,)\chi_{81}(2,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 405.u

χ405(11,)\chi_{405}(11,\cdot) χ405(41,)\chi_{405}(41,\cdot) χ405(56,)\chi_{405}(56,\cdot) χ405(86,)\chi_{405}(86,\cdot) χ405(101,)\chi_{405}(101,\cdot) χ405(131,)\chi_{405}(131,\cdot) χ405(146,)\chi_{405}(146,\cdot) χ405(176,)\chi_{405}(176,\cdot) χ405(191,)\chi_{405}(191,\cdot) χ405(221,)\chi_{405}(221,\cdot) χ405(236,)\chi_{405}(236,\cdot) χ405(266,)\chi_{405}(266,\cdot) χ405(281,)\chi_{405}(281,\cdot) χ405(311,)\chi_{405}(311,\cdot) χ405(326,)\chi_{405}(326,\cdot) χ405(356,)\chi_{405}(356,\cdot) χ405(371,)\chi_{405}(371,\cdot) χ405(401,)\chi_{405}(401,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ27)\Q(\zeta_{27})
Fixed field: Number field defined by a degree 54 polynomial

Values on generators

(326,82)(326,82)(e(154),1)(e\left(\frac{1}{54}\right),1)

First values

aa 1-11122447788111113131414161617171919
χ405(326,a) \chi_{ 405 }(326, a) 1-111e(154)e\left(\frac{1}{54}\right)e(127)e\left(\frac{1}{27}\right)e(827)e\left(\frac{8}{27}\right)e(118)e\left(\frac{1}{18}\right)e(1354)e\left(\frac{13}{54}\right)e(427)e\left(\frac{4}{27}\right)e(1754)e\left(\frac{17}{54}\right)e(227)e\left(\frac{2}{27}\right)e(1118)e\left(\frac{11}{18}\right)e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ405(326,a)   \chi_{ 405 }(326,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ405(326,))   \tau_{ a }( \chi_{ 405 }(326,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ405(326,),χ405(n,))   J(\chi_{ 405 }(326,·),\chi_{ 405 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ405(326,))  K(a,b,\chi_{ 405 }(326,·)) \; at   a,b=\; a,b = e.g. 1,2