Properties

Label 4205.1143
Modulus $4205$
Conductor $4205$
Order $116$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(116))
 
M = H._module
 
chi = DirichletCharacter(H, M([87,61]))
 
pari: [g,chi] = znchar(Mod(1143,4205))
 

Basic properties

Modulus: \(4205\)
Conductor: \(4205\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(116\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4205.y

\(\chi_{4205}(17,\cdot)\) \(\chi_{4205}(128,\cdot)\) \(\chi_{4205}(162,\cdot)\) \(\chi_{4205}(273,\cdot)\) \(\chi_{4205}(307,\cdot)\) \(\chi_{4205}(418,\cdot)\) \(\chi_{4205}(452,\cdot)\) \(\chi_{4205}(563,\cdot)\) \(\chi_{4205}(597,\cdot)\) \(\chi_{4205}(708,\cdot)\) \(\chi_{4205}(742,\cdot)\) \(\chi_{4205}(853,\cdot)\) \(\chi_{4205}(887,\cdot)\) \(\chi_{4205}(998,\cdot)\) \(\chi_{4205}(1032,\cdot)\) \(\chi_{4205}(1143,\cdot)\) \(\chi_{4205}(1177,\cdot)\) \(\chi_{4205}(1288,\cdot)\) \(\chi_{4205}(1322,\cdot)\) \(\chi_{4205}(1433,\cdot)\) \(\chi_{4205}(1467,\cdot)\) \(\chi_{4205}(1578,\cdot)\) \(\chi_{4205}(1612,\cdot)\) \(\chi_{4205}(1757,\cdot)\) \(\chi_{4205}(1868,\cdot)\) \(\chi_{4205}(1902,\cdot)\) \(\chi_{4205}(2013,\cdot)\) \(\chi_{4205}(2047,\cdot)\) \(\chi_{4205}(2158,\cdot)\) \(\chi_{4205}(2192,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{116})$
Fixed field: Number field defined by a degree 116 polynomial (not computed)

Values on generators

\((842,3366)\) → \((-i,e\left(\frac{61}{116}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 4205 }(1143, a) \) \(1\)\(1\)\(e\left(\frac{8}{29}\right)\)\(e\left(\frac{37}{58}\right)\)\(e\left(\frac{16}{29}\right)\)\(e\left(\frac{53}{58}\right)\)\(e\left(\frac{55}{116}\right)\)\(e\left(\frac{24}{29}\right)\)\(e\left(\frac{8}{29}\right)\)\(e\left(\frac{69}{116}\right)\)\(e\left(\frac{11}{58}\right)\)\(e\left(\frac{43}{116}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 4205 }(1143,a) \;\) at \(\;a = \) e.g. 2