from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4205, base_ring=CyclotomicField(116))
M = H._module
chi = DirichletCharacter(H, M([87,101]))
pari: [g,chi] = znchar(Mod(418,4205))
χ4205(17,⋅)
χ4205(128,⋅)
χ4205(162,⋅)
χ4205(273,⋅)
χ4205(307,⋅)
χ4205(418,⋅)
χ4205(452,⋅)
χ4205(563,⋅)
χ4205(597,⋅)
χ4205(708,⋅)
χ4205(742,⋅)
χ4205(853,⋅)
χ4205(887,⋅)
χ4205(998,⋅)
χ4205(1032,⋅)
χ4205(1143,⋅)
χ4205(1177,⋅)
χ4205(1288,⋅)
χ4205(1322,⋅)
χ4205(1433,⋅)
χ4205(1467,⋅)
χ4205(1578,⋅)
χ4205(1612,⋅)
χ4205(1757,⋅)
χ4205(1868,⋅)
χ4205(1902,⋅)
χ4205(2013,⋅)
χ4205(2047,⋅)
χ4205(2158,⋅)
χ4205(2192,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(842,3366) → (−i,e(116101))
a |
−1 | 1 | 2 | 3 | 4 | 6 | 7 | 8 | 9 | 11 | 12 | 13 |
χ4205(418,a) |
1 | 1 | e(2918) | e(5847) | e(297) | e(5825) | e(11615) | e(2925) | e(2918) | e(11661) | e(583) | e(11675) |