Properties

Label 4205.128
Modulus 42054205
Conductor 42054205
Order 116116
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4205, base_ring=CyclotomicField(116))
 
M = H._module
 
chi = DirichletCharacter(H, M([87,1]))
 
pari: [g,chi] = znchar(Mod(128,4205))
 

Basic properties

Modulus: 42054205
Conductor: 42054205
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 116116
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 4205.y

χ4205(17,)\chi_{4205}(17,\cdot) χ4205(128,)\chi_{4205}(128,\cdot) χ4205(162,)\chi_{4205}(162,\cdot) χ4205(273,)\chi_{4205}(273,\cdot) χ4205(307,)\chi_{4205}(307,\cdot) χ4205(418,)\chi_{4205}(418,\cdot) χ4205(452,)\chi_{4205}(452,\cdot) χ4205(563,)\chi_{4205}(563,\cdot) χ4205(597,)\chi_{4205}(597,\cdot) χ4205(708,)\chi_{4205}(708,\cdot) χ4205(742,)\chi_{4205}(742,\cdot) χ4205(853,)\chi_{4205}(853,\cdot) χ4205(887,)\chi_{4205}(887,\cdot) χ4205(998,)\chi_{4205}(998,\cdot) χ4205(1032,)\chi_{4205}(1032,\cdot) χ4205(1143,)\chi_{4205}(1143,\cdot) χ4205(1177,)\chi_{4205}(1177,\cdot) χ4205(1288,)\chi_{4205}(1288,\cdot) χ4205(1322,)\chi_{4205}(1322,\cdot) χ4205(1433,)\chi_{4205}(1433,\cdot) χ4205(1467,)\chi_{4205}(1467,\cdot) χ4205(1578,)\chi_{4205}(1578,\cdot) χ4205(1612,)\chi_{4205}(1612,\cdot) χ4205(1757,)\chi_{4205}(1757,\cdot) χ4205(1868,)\chi_{4205}(1868,\cdot) χ4205(1902,)\chi_{4205}(1902,\cdot) χ4205(2013,)\chi_{4205}(2013,\cdot) χ4205(2047,)\chi_{4205}(2047,\cdot) χ4205(2158,)\chi_{4205}(2158,\cdot) χ4205(2192,)\chi_{4205}(2192,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ116)\Q(\zeta_{116})
Fixed field: Number field defined by a degree 116 polynomial (not computed)

Values on generators

(842,3366)(842,3366)(i,e(1116))(-i,e\left(\frac{1}{116}\right))

First values

aa 1-11122334466778899111112121313
χ4205(128,a) \chi_{ 4205 }(128, a) 1111e(2229)e\left(\frac{22}{29}\right)e(5158)e\left(\frac{51}{58}\right)e(1529)e\left(\frac{15}{29}\right)e(3758)e\left(\frac{37}{58}\right)e(115116)e\left(\frac{115}{116}\right)e(829)e\left(\frac{8}{29}\right)e(2229)e\left(\frac{22}{29}\right)e(81116)e\left(\frac{81}{116}\right)e(2358)e\left(\frac{23}{58}\right)e(111116)e\left(\frac{111}{116}\right)
sage: chi.jacobi_sum(n)
 
χ4205(128,a)   \chi_{ 4205 }(128,a) \; at   a=\;a = e.g. 2