Properties

Label 43904.1385
Modulus $43904$
Conductor $21952$
Order $784$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,343,760]))
 
pari: [g,chi] = znchar(Mod(1385,43904))
 

Basic properties

Modulus: \(43904\)
Conductor: \(21952\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(784\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{21952}(10989,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.eu

\(\chi_{43904}(41,\cdot)\) \(\chi_{43904}(153,\cdot)\) \(\chi_{43904}(265,\cdot)\) \(\chi_{43904}(377,\cdot)\) \(\chi_{43904}(601,\cdot)\) \(\chi_{43904}(713,\cdot)\) \(\chi_{43904}(825,\cdot)\) \(\chi_{43904}(937,\cdot)\) \(\chi_{43904}(1049,\cdot)\) \(\chi_{43904}(1161,\cdot)\) \(\chi_{43904}(1385,\cdot)\) \(\chi_{43904}(1497,\cdot)\) \(\chi_{43904}(1609,\cdot)\) \(\chi_{43904}(1721,\cdot)\) \(\chi_{43904}(1833,\cdot)\) \(\chi_{43904}(1945,\cdot)\) \(\chi_{43904}(2169,\cdot)\) \(\chi_{43904}(2281,\cdot)\) \(\chi_{43904}(2393,\cdot)\) \(\chi_{43904}(2505,\cdot)\) \(\chi_{43904}(2617,\cdot)\) \(\chi_{43904}(2729,\cdot)\) \(\chi_{43904}(2953,\cdot)\) \(\chi_{43904}(3065,\cdot)\) \(\chi_{43904}(3177,\cdot)\) \(\chi_{43904}(3289,\cdot)\) \(\chi_{43904}(3401,\cdot)\) \(\chi_{43904}(3513,\cdot)\) \(\chi_{43904}(3737,\cdot)\) \(\chi_{43904}(3849,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{784})$
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

\((17151,9605,17153)\) → \((1,e\left(\frac{7}{16}\right),e\left(\frac{95}{98}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 43904 }(1385, a) \) \(-1\)\(1\)\(e\left(\frac{221}{784}\right)\)\(e\left(\frac{431}{784}\right)\)\(e\left(\frac{221}{392}\right)\)\(e\left(\frac{643}{784}\right)\)\(e\left(\frac{657}{784}\right)\)\(e\left(\frac{163}{196}\right)\)\(e\left(\frac{95}{196}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{41}{392}\right)\)\(e\left(\frac{39}{392}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 43904 }(1385,a) \;\) at \(\;a = \) e.g. 2