from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
M = H._module
chi = DirichletCharacter(H, M([0,637,520]))
pari: [g,chi] = znchar(Mod(1721,43904))
χ43904(41,⋅)
χ43904(153,⋅)
χ43904(265,⋅)
χ43904(377,⋅)
χ43904(601,⋅)
χ43904(713,⋅)
χ43904(825,⋅)
χ43904(937,⋅)
χ43904(1049,⋅)
χ43904(1161,⋅)
χ43904(1385,⋅)
χ43904(1497,⋅)
χ43904(1609,⋅)
χ43904(1721,⋅)
χ43904(1833,⋅)
χ43904(1945,⋅)
χ43904(2169,⋅)
χ43904(2281,⋅)
χ43904(2393,⋅)
χ43904(2505,⋅)
χ43904(2617,⋅)
χ43904(2729,⋅)
χ43904(2953,⋅)
χ43904(3065,⋅)
χ43904(3177,⋅)
χ43904(3289,⋅)
χ43904(3401,⋅)
χ43904(3513,⋅)
χ43904(3737,⋅)
χ43904(3849,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(17151,9605,17153) → (1,e(1613),e(9865))
a |
−1 | 1 | 3 | 5 | 9 | 11 | 13 | 15 | 17 | 19 | 23 | 25 |
χ43904(1721,a) |
−1 | 1 | e(78479) | e(78437) | e(39279) | e(78417) | e(784171) | e(19629) | e(19665) | e(163) | e(39259) | e(39237) |