Properties

Label 43904.265
Modulus 4390443904
Conductor 2195221952
Order 784784
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(43904, base_ring=CyclotomicField(784))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,147,104]))
 
pari: [g,chi] = znchar(Mod(265,43904))
 

Basic properties

Modulus: 4390443904
Conductor: 2195221952
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 784784
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ21952(15357,)\chi_{21952}(15357,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 43904.eu

χ43904(41,)\chi_{43904}(41,\cdot) χ43904(153,)\chi_{43904}(153,\cdot) χ43904(265,)\chi_{43904}(265,\cdot) χ43904(377,)\chi_{43904}(377,\cdot) χ43904(601,)\chi_{43904}(601,\cdot) χ43904(713,)\chi_{43904}(713,\cdot) χ43904(825,)\chi_{43904}(825,\cdot) χ43904(937,)\chi_{43904}(937,\cdot) χ43904(1049,)\chi_{43904}(1049,\cdot) χ43904(1161,)\chi_{43904}(1161,\cdot) χ43904(1385,)\chi_{43904}(1385,\cdot) χ43904(1497,)\chi_{43904}(1497,\cdot) χ43904(1609,)\chi_{43904}(1609,\cdot) χ43904(1721,)\chi_{43904}(1721,\cdot) χ43904(1833,)\chi_{43904}(1833,\cdot) χ43904(1945,)\chi_{43904}(1945,\cdot) χ43904(2169,)\chi_{43904}(2169,\cdot) χ43904(2281,)\chi_{43904}(2281,\cdot) χ43904(2393,)\chi_{43904}(2393,\cdot) χ43904(2505,)\chi_{43904}(2505,\cdot) χ43904(2617,)\chi_{43904}(2617,\cdot) χ43904(2729,)\chi_{43904}(2729,\cdot) χ43904(2953,)\chi_{43904}(2953,\cdot) χ43904(3065,)\chi_{43904}(3065,\cdot) χ43904(3177,)\chi_{43904}(3177,\cdot) χ43904(3289,)\chi_{43904}(3289,\cdot) χ43904(3401,)\chi_{43904}(3401,\cdot) χ43904(3513,)\chi_{43904}(3513,\cdot) χ43904(3737,)\chi_{43904}(3737,\cdot) χ43904(3849,)\chi_{43904}(3849,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ784)\Q(\zeta_{784})
Fixed field: Number field defined by a degree 784 polynomial (not computed)

Values on generators

(17151,9605,17153)(17151,9605,17153)(1,e(316),e(1398))(1,e\left(\frac{3}{16}\right),e\left(\frac{13}{98}\right))

First values

aa 1-1113355991111131315151717191923232525
χ43904(265,a) \chi_{ 43904 }(265, a) 1-111e(545784)e\left(\frac{545}{784}\right)e(27784)e\left(\frac{27}{784}\right)e(153392)e\left(\frac{153}{392}\right)e(415784)e\left(\frac{415}{784}\right)e(485784)e\left(\frac{485}{784}\right)e(143196)e\left(\frac{143}{196}\right)e(111196)e\left(\frac{111}{196}\right)e(1316)e\left(\frac{13}{16}\right)e(149392)e\left(\frac{149}{392}\right)e(27392)e\left(\frac{27}{392}\right)
sage: chi.jacobi_sum(n)
 
χ43904(265,a)   \chi_{ 43904 }(265,a) \; at   a=\;a = e.g. 2