from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([14,32,49]))
pari: [g,chi] = znchar(Mod(4925,5733))
χ5733(11,⋅)
χ5733(149,⋅)
χ5733(527,⋅)
χ5733(830,⋅)
χ5733(968,⋅)
χ5733(1346,⋅)
χ5733(1523,⋅)
χ5733(1649,⋅)
χ5733(1787,⋅)
χ5733(2165,⋅)
χ5733(2342,⋅)
χ5733(2606,⋅)
χ5733(2984,⋅)
χ5733(3161,⋅)
χ5733(3287,⋅)
χ5733(3425,⋅)
χ5733(3980,⋅)
χ5733(4106,⋅)
χ5733(4622,⋅)
χ5733(4799,⋅)
χ5733(4925,⋅)
χ5733(5063,⋅)
χ5733(5441,⋅)
χ5733(5618,⋅)
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2549,1522,5293) → (e(61),e(218),e(127))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 16 | 17 | 19 | 20 |
χ5733(4925,a) |
1 | 1 | e(8455) | e(4213) | e(8411) | e(2827) | e(1411) | e(8441) | e(2113) | e(214) | i | e(8437) |