Properties

Label 5733.mf
Modulus 57335733
Conductor 57335733
Order 8484
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,80,49]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(11,5733))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 57335733
Conductor: 57335733
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 8484
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ84)\Q(\zeta_{84})
Fixed field: Number field defined by a degree 84 polynomial

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ5733(11,)\chi_{5733}(11,\cdot) 11 11 e(4384)e\left(\frac{43}{84}\right) e(142)e\left(\frac{1}{42}\right) e(5984)e\left(\frac{59}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(314)e\left(\frac{3}{14}\right) e(2984)e\left(\frac{29}{84}\right) e(121)e\left(\frac{1}{21}\right) e(1021)e\left(\frac{10}{21}\right) ii e(6184)e\left(\frac{61}{84}\right)
χ5733(149,)\chi_{5733}(149,\cdot) 11 11 e(2984)e\left(\frac{29}{84}\right) e(2942)e\left(\frac{29}{42}\right) e(7384)e\left(\frac{73}{84}\right) e(128)e\left(\frac{1}{28}\right) e(314)e\left(\frac{3}{14}\right) e(4384)e\left(\frac{43}{84}\right) e(821)e\left(\frac{8}{21}\right) e(1721)e\left(\frac{17}{21}\right) i-i e(4784)e\left(\frac{47}{84}\right)
χ5733(527,)\chi_{5733}(527,\cdot) 11 11 e(4784)e\left(\frac{47}{84}\right) e(542)e\left(\frac{5}{42}\right) e(4384)e\left(\frac{43}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(114)e\left(\frac{1}{14}\right) e(6184)e\left(\frac{61}{84}\right) e(521)e\left(\frac{5}{21}\right) e(821)e\left(\frac{8}{21}\right) ii e(5384)e\left(\frac{53}{84}\right)
χ5733(830,)\chi_{5733}(830,\cdot) 11 11 e(3184)e\left(\frac{31}{84}\right) e(3142)e\left(\frac{31}{42}\right) e(2384)e\left(\frac{23}{84}\right) e(328)e\left(\frac{3}{28}\right) e(914)e\left(\frac{9}{14}\right) e(1784)e\left(\frac{17}{84}\right) e(1021)e\left(\frac{10}{21}\right) e(1621)e\left(\frac{16}{21}\right) ii e(184)e\left(\frac{1}{84}\right)
χ5733(968,)\chi_{5733}(968,\cdot) 11 11 e(584)e\left(\frac{5}{84}\right) e(542)e\left(\frac{5}{42}\right) e(184)e\left(\frac{1}{84}\right) e(528)e\left(\frac{5}{28}\right) e(114)e\left(\frac{1}{14}\right) e(1984)e\left(\frac{19}{84}\right) e(521)e\left(\frac{5}{21}\right) e(821)e\left(\frac{8}{21}\right) i-i e(1184)e\left(\frac{11}{84}\right)
χ5733(1346,)\chi_{5733}(1346,\cdot) 11 11 e(2384)e\left(\frac{23}{84}\right) e(2342)e\left(\frac{23}{42}\right) e(5584)e\left(\frac{55}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(3784)e\left(\frac{37}{84}\right) e(221)e\left(\frac{2}{21}\right) e(2021)e\left(\frac{20}{21}\right) ii e(1784)e\left(\frac{17}{84}\right)
χ5733(1523,)\chi_{5733}(1523,\cdot) 11 11 e(3784)e\left(\frac{37}{84}\right) e(3742)e\left(\frac{37}{42}\right) e(4184)e\left(\frac{41}{84}\right) e(928)e\left(\frac{9}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(2384)e\left(\frac{23}{84}\right) e(1621)e\left(\frac{16}{21}\right) e(1321)e\left(\frac{13}{21}\right) i-i e(3184)e\left(\frac{31}{84}\right)
χ5733(1649,)\chi_{5733}(1649,\cdot) 11 11 e(1984)e\left(\frac{19}{84}\right) e(1942)e\left(\frac{19}{42}\right) e(7184)e\left(\frac{71}{84}\right) e(1928)e\left(\frac{19}{28}\right) e(114)e\left(\frac{1}{14}\right) e(584)e\left(\frac{5}{84}\right) e(1921)e\left(\frac{19}{21}\right) e(121)e\left(\frac{1}{21}\right) ii e(2584)e\left(\frac{25}{84}\right)
χ5733(1787,)\chi_{5733}(1787,\cdot) 11 11 e(6584)e\left(\frac{65}{84}\right) e(2342)e\left(\frac{23}{42}\right) e(1384)e\left(\frac{13}{84}\right) e(928)e\left(\frac{9}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(7984)e\left(\frac{79}{84}\right) e(221)e\left(\frac{2}{21}\right) e(2021)e\left(\frac{20}{21}\right) i-i e(5984)e\left(\frac{59}{84}\right)
χ5733(2165,)\chi_{5733}(2165,\cdot) 11 11 e(8384)e\left(\frac{83}{84}\right) e(4142)e\left(\frac{41}{42}\right) e(6784)e\left(\frac{67}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(1384)e\left(\frac{13}{84}\right) e(2021)e\left(\frac{20}{21}\right) e(1121)e\left(\frac{11}{21}\right) ii e(6584)e\left(\frac{65}{84}\right)
χ5733(2342,)\chi_{5733}(2342,\cdot) 11 11 e(2584)e\left(\frac{25}{84}\right) e(2542)e\left(\frac{25}{42}\right) e(584)e\left(\frac{5}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(514)e\left(\frac{5}{14}\right) e(1184)e\left(\frac{11}{84}\right) e(421)e\left(\frac{4}{21}\right) e(1921)e\left(\frac{19}{21}\right) i-i e(5584)e\left(\frac{55}{84}\right)
χ5733(2606,)\chi_{5733}(2606,\cdot) 11 11 e(4184)e\left(\frac{41}{84}\right) e(4142)e\left(\frac{41}{42}\right) e(2584)e\left(\frac{25}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(5584)e\left(\frac{55}{84}\right) e(2021)e\left(\frac{20}{21}\right) e(1121)e\left(\frac{11}{21}\right) i-i e(2384)e\left(\frac{23}{84}\right)
χ5733(2984,)\chi_{5733}(2984,\cdot) 11 11 e(5984)e\left(\frac{59}{84}\right) e(1742)e\left(\frac{17}{42}\right) e(7984)e\left(\frac{79}{84}\right) e(328)e\left(\frac{3}{28}\right) e(914)e\left(\frac{9}{14}\right) e(7384)e\left(\frac{73}{84}\right) e(1721)e\left(\frac{17}{21}\right) e(221)e\left(\frac{2}{21}\right) ii e(2984)e\left(\frac{29}{84}\right)
χ5733(3161,)\chi_{5733}(3161,\cdot) 11 11 e(1384)e\left(\frac{13}{84}\right) e(1342)e\left(\frac{13}{42}\right) e(5384)e\left(\frac{53}{84}\right) e(1328)e\left(\frac{13}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(8384)e\left(\frac{83}{84}\right) e(1321)e\left(\frac{13}{21}\right) e(421)e\left(\frac{4}{21}\right) i-i e(7984)e\left(\frac{79}{84}\right)
χ5733(3287,)\chi_{5733}(3287,\cdot) 11 11 e(7984)e\left(\frac{79}{84}\right) e(3742)e\left(\frac{37}{42}\right) e(8384)e\left(\frac{83}{84}\right) e(2328)e\left(\frac{23}{28}\right) e(1314)e\left(\frac{13}{14}\right) e(6584)e\left(\frac{65}{84}\right) e(1621)e\left(\frac{16}{21}\right) e(1321)e\left(\frac{13}{21}\right) ii e(7384)e\left(\frac{73}{84}\right)
χ5733(3425,)\chi_{5733}(3425,\cdot) 11 11 e(1784)e\left(\frac{17}{84}\right) e(1742)e\left(\frac{17}{42}\right) e(3784)e\left(\frac{37}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(914)e\left(\frac{9}{14}\right) e(3184)e\left(\frac{31}{84}\right) e(1721)e\left(\frac{17}{21}\right) e(221)e\left(\frac{2}{21}\right) i-i e(7184)e\left(\frac{71}{84}\right)
χ5733(3980,)\chi_{5733}(3980,\cdot) 11 11 e(184)e\left(\frac{1}{84}\right) e(142)e\left(\frac{1}{42}\right) e(1784)e\left(\frac{17}{84}\right) e(128)e\left(\frac{1}{28}\right) e(314)e\left(\frac{3}{14}\right) e(7184)e\left(\frac{71}{84}\right) e(121)e\left(\frac{1}{21}\right) e(1021)e\left(\frac{10}{21}\right) i-i e(1984)e\left(\frac{19}{84}\right)
χ5733(4106,)\chi_{5733}(4106,\cdot) 11 11 e(6784)e\left(\frac{67}{84}\right) e(2542)e\left(\frac{25}{42}\right) e(4784)e\left(\frac{47}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(514)e\left(\frac{5}{14}\right) e(5384)e\left(\frac{53}{84}\right) e(421)e\left(\frac{4}{21}\right) e(1921)e\left(\frac{19}{21}\right) ii e(1384)e\left(\frac{13}{84}\right)
χ5733(4622,)\chi_{5733}(4622,\cdot) 11 11 e(1184)e\left(\frac{11}{84}\right) e(1142)e\left(\frac{11}{42}\right) e(1984)e\left(\frac{19}{84}\right) e(1128)e\left(\frac{11}{28}\right) e(514)e\left(\frac{5}{14}\right) e(2584)e\left(\frac{25}{84}\right) e(1121)e\left(\frac{11}{21}\right) e(521)e\left(\frac{5}{21}\right) ii e(4184)e\left(\frac{41}{84}\right)
χ5733(4799,)\chi_{5733}(4799,\cdot) 11 11 e(7384)e\left(\frac{73}{84}\right) e(3142)e\left(\frac{31}{42}\right) e(6584)e\left(\frac{65}{84}\right) e(1728)e\left(\frac{17}{28}\right) e(914)e\left(\frac{9}{14}\right) e(5984)e\left(\frac{59}{84}\right) e(1021)e\left(\frac{10}{21}\right) e(1621)e\left(\frac{16}{21}\right) i-i e(4384)e\left(\frac{43}{84}\right)
χ5733(4925,)\chi_{5733}(4925,\cdot) 11 11 e(5584)e\left(\frac{55}{84}\right) e(1342)e\left(\frac{13}{42}\right) e(1184)e\left(\frac{11}{84}\right) e(2728)e\left(\frac{27}{28}\right) e(1114)e\left(\frac{11}{14}\right) e(4184)e\left(\frac{41}{84}\right) e(1321)e\left(\frac{13}{21}\right) e(421)e\left(\frac{4}{21}\right) ii e(3784)e\left(\frac{37}{84}\right)
χ5733(5063,)\chi_{5733}(5063,\cdot) 11 11 e(5384)e\left(\frac{53}{84}\right) e(1142)e\left(\frac{11}{42}\right) e(6184)e\left(\frac{61}{84}\right) e(2528)e\left(\frac{25}{28}\right) e(514)e\left(\frac{5}{14}\right) e(6784)e\left(\frac{67}{84}\right) e(1121)e\left(\frac{11}{21}\right) e(521)e\left(\frac{5}{21}\right) i-i e(8384)e\left(\frac{83}{84}\right)
χ5733(5441,)\chi_{5733}(5441,\cdot) 11 11 e(7184)e\left(\frac{71}{84}\right) e(2942)e\left(\frac{29}{42}\right) e(3184)e\left(\frac{31}{84}\right) e(1528)e\left(\frac{15}{28}\right) e(314)e\left(\frac{3}{14}\right) e(184)e\left(\frac{1}{84}\right) e(821)e\left(\frac{8}{21}\right) e(1721)e\left(\frac{17}{21}\right) ii e(584)e\left(\frac{5}{84}\right)
χ5733(5618,)\chi_{5733}(5618,\cdot) 11 11 e(6184)e\left(\frac{61}{84}\right) e(1942)e\left(\frac{19}{42}\right) e(2984)e\left(\frac{29}{84}\right) e(528)e\left(\frac{5}{28}\right) e(114)e\left(\frac{1}{14}\right) e(4784)e\left(\frac{47}{84}\right) e(1921)e\left(\frac{19}{21}\right) e(121)e\left(\frac{1}{21}\right) i-i e(6784)e\left(\frac{67}{84}\right)