sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
M = H._module
chi = DirichletCharacter(H, M([14,8,7]))
pari:[g,chi] = znchar(Mod(5618,5733))
Modulus: | 5733 | |
Conductor: | 5733 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 84 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ5733(11,⋅)
χ5733(149,⋅)
χ5733(527,⋅)
χ5733(830,⋅)
χ5733(968,⋅)
χ5733(1346,⋅)
χ5733(1523,⋅)
χ5733(1649,⋅)
χ5733(1787,⋅)
χ5733(2165,⋅)
χ5733(2342,⋅)
χ5733(2606,⋅)
χ5733(2984,⋅)
χ5733(3161,⋅)
χ5733(3287,⋅)
χ5733(3425,⋅)
χ5733(3980,⋅)
χ5733(4106,⋅)
χ5733(4622,⋅)
χ5733(4799,⋅)
χ5733(4925,⋅)
χ5733(5063,⋅)
χ5733(5441,⋅)
χ5733(5618,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2549,1522,5293) → (e(61),e(212),e(121))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 16 | 17 | 19 | 20 |
χ5733(5618,a) |
1 | 1 | e(8461) | e(4219) | e(8429) | e(285) | e(141) | e(8447) | e(2119) | e(211) | −i | e(8467) |
sage:chi.jacobi_sum(n)