Properties

Label 644.425
Modulus $644$
Conductor $161$
Order $66$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,27]))
 
pari: [g,chi] = znchar(Mod(425,644))
 

Basic properties

Modulus: \(644\)
Conductor: \(161\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(66\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{161}(103,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 644.bc

\(\chi_{644}(5,\cdot)\) \(\chi_{644}(17,\cdot)\) \(\chi_{644}(33,\cdot)\) \(\chi_{644}(61,\cdot)\) \(\chi_{644}(89,\cdot)\) \(\chi_{644}(129,\cdot)\) \(\chi_{644}(145,\cdot)\) \(\chi_{644}(157,\cdot)\) \(\chi_{644}(201,\cdot)\) \(\chi_{644}(241,\cdot)\) \(\chi_{644}(297,\cdot)\) \(\chi_{644}(313,\cdot)\) \(\chi_{644}(341,\cdot)\) \(\chi_{644}(425,\cdot)\) \(\chi_{644}(465,\cdot)\) \(\chi_{644}(481,\cdot)\) \(\chi_{644}(493,\cdot)\) \(\chi_{644}(521,\cdot)\) \(\chi_{644}(549,\cdot)\) \(\chi_{644}(605,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{33})\)
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

\((323,185,281)\) → \((1,e\left(\frac{5}{6}\right),e\left(\frac{9}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(25\)\(27\)
\( \chi_{ 644 }(425, a) \) \(1\)\(1\)\(e\left(\frac{25}{66}\right)\)\(e\left(\frac{19}{33}\right)\)\(e\left(\frac{25}{33}\right)\)\(e\left(\frac{1}{66}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{23}{33}\right)\)\(e\left(\frac{10}{33}\right)\)\(e\left(\frac{5}{33}\right)\)\(e\left(\frac{3}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 644 }(425,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 644 }(425,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 644 }(425,·),\chi_{ 644 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 644 }(425,·)) \;\) at \(\; a,b = \) e.g. 1,2