Properties

Label 644.5
Modulus 644644
Conductor 161161
Order 6666
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(644, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,55,3]))
 
pari: [g,chi] = znchar(Mod(5,644))
 

Basic properties

Modulus: 644644
Conductor: 161161
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6666
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ161(5,)\chi_{161}(5,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 644.bc

χ644(5,)\chi_{644}(5,\cdot) χ644(17,)\chi_{644}(17,\cdot) χ644(33,)\chi_{644}(33,\cdot) χ644(61,)\chi_{644}(61,\cdot) χ644(89,)\chi_{644}(89,\cdot) χ644(129,)\chi_{644}(129,\cdot) χ644(145,)\chi_{644}(145,\cdot) χ644(157,)\chi_{644}(157,\cdot) χ644(201,)\chi_{644}(201,\cdot) χ644(241,)\chi_{644}(241,\cdot) χ644(297,)\chi_{644}(297,\cdot) χ644(313,)\chi_{644}(313,\cdot) χ644(341,)\chi_{644}(341,\cdot) χ644(425,)\chi_{644}(425,\cdot) χ644(465,)\chi_{644}(465,\cdot) χ644(481,)\chi_{644}(481,\cdot) χ644(493,)\chi_{644}(493,\cdot) χ644(521,)\chi_{644}(521,\cdot) χ644(549,)\chi_{644}(549,\cdot) χ644(605,)\chi_{644}(605,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ33)\Q(\zeta_{33})
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

(323,185,281)(323,185,281)(1,e(56),e(122))(1,e\left(\frac{5}{6}\right),e\left(\frac{1}{22}\right))

First values

aa 1-1113355991111131315151717191925252727
χ644(5,a) \chi_{ 644 }(5, a) 1111e(3766)e\left(\frac{37}{66}\right)e(733)e\left(\frac{7}{33}\right)e(433)e\left(\frac{4}{33}\right)e(4966)e\left(\frac{49}{66}\right)e(322)e\left(\frac{3}{22}\right)e(1722)e\left(\frac{17}{22}\right)e(533)e\left(\frac{5}{33}\right)e(2833)e\left(\frac{28}{33}\right)e(1433)e\left(\frac{14}{33}\right)e(1522)e\left(\frac{15}{22}\right)
sage: chi.jacobi_sum(n)
 
χ644(5,a)   \chi_{ 644 }(5,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ644(5,))   \tau_{ a }( \chi_{ 644 }(5,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ644(5,),χ644(n,))   J(\chi_{ 644 }(5,·),\chi_{ 644 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ644(5,))  K(a,b,\chi_{ 644 }(5,·)) \; at   a,b=\; a,b = e.g. 1,2