Properties

Label 6900.1459
Modulus $6900$
Conductor $2300$
Order $110$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,0,77,15]))
 
pari: [g,chi] = znchar(Mod(1459,6900))
 

Basic properties

Modulus: \(6900\)
Conductor: \(2300\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(110\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2300}(1459,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6900.dh

\(\chi_{6900}(19,\cdot)\) \(\chi_{6900}(79,\cdot)\) \(\chi_{6900}(319,\cdot)\) \(\chi_{6900}(379,\cdot)\) \(\chi_{6900}(559,\cdot)\) \(\chi_{6900}(619,\cdot)\) \(\chi_{6900}(1279,\cdot)\) \(\chi_{6900}(1339,\cdot)\) \(\chi_{6900}(1459,\cdot)\) \(\chi_{6900}(1579,\cdot)\) \(\chi_{6900}(1759,\cdot)\) \(\chi_{6900}(1939,\cdot)\) \(\chi_{6900}(2179,\cdot)\) \(\chi_{6900}(2659,\cdot)\) \(\chi_{6900}(2719,\cdot)\) \(\chi_{6900}(2779,\cdot)\) \(\chi_{6900}(2839,\cdot)\) \(\chi_{6900}(2959,\cdot)\) \(\chi_{6900}(3079,\cdot)\) \(\chi_{6900}(3139,\cdot)\) \(\chi_{6900}(3319,\cdot)\) \(\chi_{6900}(3379,\cdot)\) \(\chi_{6900}(3559,\cdot)\) \(\chi_{6900}(4039,\cdot)\) \(\chi_{6900}(4159,\cdot)\) \(\chi_{6900}(4219,\cdot)\) \(\chi_{6900}(4339,\cdot)\) \(\chi_{6900}(4459,\cdot)\) \(\chi_{6900}(4519,\cdot)\) \(\chi_{6900}(4759,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{55})$
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

\((3451,4601,277,1201)\) → \((-1,1,e\left(\frac{7}{10}\right),e\left(\frac{3}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 6900 }(1459, a) \) \(1\)\(1\)\(e\left(\frac{13}{22}\right)\)\(e\left(\frac{51}{55}\right)\)\(e\left(\frac{23}{110}\right)\)\(e\left(\frac{3}{55}\right)\)\(e\left(\frac{8}{55}\right)\)\(e\left(\frac{47}{55}\right)\)\(e\left(\frac{101}{110}\right)\)\(e\left(\frac{9}{55}\right)\)\(e\left(\frac{24}{55}\right)\)\(e\left(\frac{15}{22}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6900 }(1459,a) \;\) at \(\;a = \) e.g. 2