sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,0,99,75]))
pari:[g,chi] = znchar(Mod(19,6900))
χ6900(19,⋅)
χ6900(79,⋅)
χ6900(319,⋅)
χ6900(379,⋅)
χ6900(559,⋅)
χ6900(619,⋅)
χ6900(1279,⋅)
χ6900(1339,⋅)
χ6900(1459,⋅)
χ6900(1579,⋅)
χ6900(1759,⋅)
χ6900(1939,⋅)
χ6900(2179,⋅)
χ6900(2659,⋅)
χ6900(2719,⋅)
χ6900(2779,⋅)
χ6900(2839,⋅)
χ6900(2959,⋅)
χ6900(3079,⋅)
χ6900(3139,⋅)
χ6900(3319,⋅)
χ6900(3379,⋅)
χ6900(3559,⋅)
χ6900(4039,⋅)
χ6900(4159,⋅)
χ6900(4219,⋅)
χ6900(4339,⋅)
χ6900(4459,⋅)
χ6900(4519,⋅)
χ6900(4759,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(3451,4601,277,1201) → (−1,1,e(109),e(2215))
a |
−1 | 1 | 7 | 11 | 13 | 17 | 19 | 29 | 31 | 37 | 41 | 43 |
χ6900(19,a) |
1 | 1 | e(2221) | e(552) | e(11071) | e(5526) | e(5551) | e(554) | e(11087) | e(5523) | e(5543) | e(229) |
sage:chi.jacobi_sum(n)