from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6900, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,0,99,75]))
chi.galois_orbit()
[g,chi] = znchar(Mod(19,6900))
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(6900\) | |
Conductor: | \(2300\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(110\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from 2300.br | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | $\Q(\zeta_{55})$ |
Fixed field: | Number field defined by a degree 110 polynomial (not computed) |
First 31 of 40 characters in Galois orbit
Character | \(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{6900}(19,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{6900}(79,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{6900}(319,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{6900}(379,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{6900}(559,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{43}{110}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{31}{110}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{6900}(619,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{41}{110}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{27}{110}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{6900}(1279,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{29}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{6900}(1339,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{37}{110}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{19}{110}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{6900}(1459,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{101}{110}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{6900}(1579,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{79}{110}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{103}{110}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{6900}(1759,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{3}{110}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{61}{110}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{6900}(1939,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{87}{110}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{6900}(2179,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{39}{110}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{23}{110}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{13}{22}\right)\) |
\(\chi_{6900}(2659,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{6900}(2719,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{107}{110}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{5}{22}\right)\) |
\(\chi_{6900}(2779,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{49}{110}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{43}{110}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{6900}(2839,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{67}{110}\right)\) | \(e\left(\frac{47}{55}\right)\) | \(e\left(\frac{52}{55}\right)\) | \(e\left(\frac{3}{55}\right)\) | \(e\left(\frac{79}{110}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{6900}(2959,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{13}{110}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{81}{110}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{6900}(3079,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{8}{55}\right)\) | \(e\left(\frac{9}{110}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{73}{110}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{6900}(3139,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{47}{110}\right)\) | \(e\left(\frac{42}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{39}{110}\right)\) | \(e\left(\frac{16}{55}\right)\) | \(e\left(\frac{6}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{6900}(3319,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{9}{22}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{21}{110}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{19}{55}\right)\) | \(e\left(\frac{97}{110}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{7}{22}\right)\) |
\(\chi_{6900}(3379,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{23}{55}\right)\) | \(e\left(\frac{19}{110}\right)\) | \(e\left(\frac{24}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{6900}(3559,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{83}{110}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{13}{22}\right)\) |
\(\chi_{6900}(4039,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{7}{110}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{12}{55}\right)\) | \(e\left(\frac{43}{55}\right)\) | \(e\left(\frac{69}{110}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{17}{22}\right)\) |
\(\chi_{6900}(4159,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{93}{110}\right)\) | \(e\left(\frac{48}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{21}{110}\right)\) | \(e\left(\frac{34}{55}\right)\) | \(e\left(\frac{54}{55}\right)\) | \(e\left(\frac{9}{22}\right)\) |
\(\chi_{6900}(4219,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{1}{110}\right)\) | \(e\left(\frac{36}{55}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{15}{22}\right)\) |
\(\chi_{6900}(4339,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{15}{22}\right)\) | \(e\left(\frac{14}{55}\right)\) | \(e\left(\frac{57}{110}\right)\) | \(e\left(\frac{17}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{59}{110}\right)\) | \(e\left(\frac{51}{55}\right)\) | \(e\left(\frac{26}{55}\right)\) | \(e\left(\frac{19}{22}\right)\) |
\(\chi_{6900}(4459,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{41}{55}\right)\) | \(e\left(\frac{53}{110}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{27}{55}\right)\) | \(e\left(\frac{51}{110}\right)\) | \(e\left(\frac{4}{55}\right)\) | \(e\left(\frac{29}{55}\right)\) | \(e\left(\frac{3}{22}\right)\) |
\(\chi_{6900}(4519,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{17}{22}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{91}{110}\right)\) | \(e\left(\frac{31}{55}\right)\) | \(e\left(\frac{46}{55}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{38}{55}\right)\) | \(e\left(\frac{28}{55}\right)\) | \(e\left(\frac{1}{22}\right)\) |
\(\chi_{6900}(4759,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{5}{22}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{63}{110}\right)\) | \(e\left(\frac{13}{55}\right)\) | \(e\left(\frac{53}{55}\right)\) | \(e\left(\frac{2}{55}\right)\) | \(e\left(\frac{71}{110}\right)\) | \(e\left(\frac{39}{55}\right)\) | \(e\left(\frac{49}{55}\right)\) | \(e\left(\frac{21}{22}\right)\) |
\(\chi_{6900}(4939,\cdot)\) | \(1\) | \(1\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{9}{55}\right)\) | \(e\left(\frac{17}{110}\right)\) | \(e\left(\frac{7}{55}\right)\) | \(e\left(\frac{37}{55}\right)\) | \(e\left(\frac{18}{55}\right)\) | \(e\left(\frac{89}{110}\right)\) | \(e\left(\frac{21}{55}\right)\) | \(e\left(\frac{1}{55}\right)\) | \(e\left(\frac{13}{22}\right)\) |