Basic properties
Modulus: | \(7605\) | |
Conductor: | \(2535\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(156\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{2535}(2447,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 7605.ge
\(\chi_{7605}(107,\cdot)\) \(\chi_{7605}(152,\cdot)\) \(\chi_{7605}(458,\cdot)\) \(\chi_{7605}(503,\cdot)\) \(\chi_{7605}(692,\cdot)\) \(\chi_{7605}(737,\cdot)\) \(\chi_{7605}(1043,\cdot)\) \(\chi_{7605}(1088,\cdot)\) \(\chi_{7605}(1277,\cdot)\) \(\chi_{7605}(1322,\cdot)\) \(\chi_{7605}(1628,\cdot)\) \(\chi_{7605}(1673,\cdot)\) \(\chi_{7605}(1862,\cdot)\) \(\chi_{7605}(1907,\cdot)\) \(\chi_{7605}(2213,\cdot)\) \(\chi_{7605}(2258,\cdot)\) \(\chi_{7605}(2447,\cdot)\) \(\chi_{7605}(2492,\cdot)\) \(\chi_{7605}(2798,\cdot)\) \(\chi_{7605}(2843,\cdot)\) \(\chi_{7605}(3032,\cdot)\) \(\chi_{7605}(3077,\cdot)\) \(\chi_{7605}(3383,\cdot)\) \(\chi_{7605}(3428,\cdot)\) \(\chi_{7605}(3617,\cdot)\) \(\chi_{7605}(3662,\cdot)\) \(\chi_{7605}(3968,\cdot)\) \(\chi_{7605}(4013,\cdot)\) \(\chi_{7605}(4553,\cdot)\) \(\chi_{7605}(4598,\cdot)\) ...
Related number fields
Field of values: | $\Q(\zeta_{156})$ |
Fixed field: | Number field defined by a degree 156 polynomial (not computed) |
Values on generators
\((6761,1522,6931)\) → \((-1,i,e\left(\frac{7}{39}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(14\) | \(16\) | \(17\) | \(19\) | \(22\) |
\( \chi_{ 7605 }(2447, a) \) | \(1\) | \(1\) | \(e\left(\frac{145}{156}\right)\) | \(e\left(\frac{67}{78}\right)\) | \(e\left(\frac{71}{156}\right)\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{77}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{28}{39}\right)\) | \(e\left(\frac{149}{156}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) |