Properties

Label 7605.4598
Modulus $7605$
Conductor $2535$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([78,117,116]))
 
pari: [g,chi] = znchar(Mod(4598,7605))
 

Basic properties

Modulus: \(7605\)
Conductor: \(2535\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2535}(2063,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 7605.ge

\(\chi_{7605}(107,\cdot)\) \(\chi_{7605}(152,\cdot)\) \(\chi_{7605}(458,\cdot)\) \(\chi_{7605}(503,\cdot)\) \(\chi_{7605}(692,\cdot)\) \(\chi_{7605}(737,\cdot)\) \(\chi_{7605}(1043,\cdot)\) \(\chi_{7605}(1088,\cdot)\) \(\chi_{7605}(1277,\cdot)\) \(\chi_{7605}(1322,\cdot)\) \(\chi_{7605}(1628,\cdot)\) \(\chi_{7605}(1673,\cdot)\) \(\chi_{7605}(1862,\cdot)\) \(\chi_{7605}(1907,\cdot)\) \(\chi_{7605}(2213,\cdot)\) \(\chi_{7605}(2258,\cdot)\) \(\chi_{7605}(2447,\cdot)\) \(\chi_{7605}(2492,\cdot)\) \(\chi_{7605}(2798,\cdot)\) \(\chi_{7605}(2843,\cdot)\) \(\chi_{7605}(3032,\cdot)\) \(\chi_{7605}(3077,\cdot)\) \(\chi_{7605}(3383,\cdot)\) \(\chi_{7605}(3428,\cdot)\) \(\chi_{7605}(3617,\cdot)\) \(\chi_{7605}(3662,\cdot)\) \(\chi_{7605}(3968,\cdot)\) \(\chi_{7605}(4013,\cdot)\) \(\chi_{7605}(4553,\cdot)\) \(\chi_{7605}(4598,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((6761,1522,6931)\) → \((-1,-i,e\left(\frac{29}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(14\)\(16\)\(17\)\(19\)\(22\)
\( \chi_{ 7605 }(4598, a) \) \(1\)\(1\)\(e\left(\frac{155}{156}\right)\)\(e\left(\frac{77}{78}\right)\)\(e\left(\frac{49}{156}\right)\)\(e\left(\frac{51}{52}\right)\)\(e\left(\frac{7}{78}\right)\)\(e\left(\frac{4}{13}\right)\)\(e\left(\frac{38}{39}\right)\)\(e\left(\frac{127}{156}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{1}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 7605 }(4598,a) \;\) at \(\;a = \) e.g. 2