Properties

Label 7605.ge
Modulus $7605$
Conductor $2535$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7605, base_ring=CyclotomicField(156))
 
M = H._module
 
chi = DirichletCharacter(H, M([78,39,100]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(107,7605))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7605\)
Conductor: \(2535\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(156\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2535.cs
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

First 31 of 48 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(14\) \(16\) \(17\) \(19\) \(22\)
\(\chi_{7605}(107,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(152,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(458,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{19}{78}\right)\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(503,\cdot)\) \(1\) \(1\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{97}{156}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{19}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(692,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(737,\cdot)\) \(1\) \(1\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(1043,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{29}{156}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(1088,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{156}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{1}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{79}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(1277,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(1322,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(1628,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{61}{78}\right)\) \(e\left(\frac{53}{156}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{41}{78}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{131}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(1673,\cdot)\) \(1\) \(1\) \(e\left(\frac{107}{156}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{61}{156}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{139}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(1862,\cdot)\) \(1\) \(1\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(2213,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(2258,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{23}{78}\right)\) \(e\left(\frac{121}{156}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{43}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(2447,\cdot)\) \(1\) \(1\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(2492,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(2798,\cdot)\) \(1\) \(1\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{25}{78}\right)\) \(e\left(\frac{101}{156}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{59}{78}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{23}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(2843,\cdot)\) \(1\) \(1\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{25}{156}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{37}{78}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{103}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(3032,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(3077,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{156}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(3383,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{125}{156}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{29}{78}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{47}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(3428,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{11}{78}\right)\) \(e\left(\frac{85}{156}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{1}{78}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{7}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(3617,\cdot)\) \(1\) \(1\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{31}{78}\right)\) \(e\left(\frac{119}{156}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{17}{78}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{41}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{7605}(3662,\cdot)\) \(1\) \(1\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{71}{78}\right)\) \(e\left(\frac{31}{156}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{109}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{12}\right)\)
\(\chi_{7605}(3968,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{67}{78}\right)\) \(e\left(\frac{149}{156}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{71}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(4013,\cdot)\) \(1\) \(1\) \(e\left(\frac{83}{156}\right)\) \(e\left(\frac{5}{78}\right)\) \(e\left(\frac{145}{156}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{43}{78}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{67}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(4553,\cdot)\) \(1\) \(1\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{49}{78}\right)\) \(e\left(\frac{17}{156}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{47}{78}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{95}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{7605}(4598,\cdot)\) \(1\) \(1\) \(e\left(\frac{155}{156}\right)\) \(e\left(\frac{77}{78}\right)\) \(e\left(\frac{49}{156}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{7}{78}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{127}{156}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{7605}(4787,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{156}\right)\) \(e\left(\frac{73}{78}\right)\) \(e\left(\frac{11}{156}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{35}{78}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{89}{156}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{12}\right)\)