Properties

Label 847.139
Modulus 847847
Conductor 847847
Order 110110
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(110))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,67]))
 
pari: [g,chi] = znchar(Mod(139,847))
 

Basic properties

Modulus: 847847
Conductor: 847847
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 110110
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 847.ba

χ847(6,)\chi_{847}(6,\cdot) χ847(13,)\chi_{847}(13,\cdot) χ847(41,)\chi_{847}(41,\cdot) χ847(62,)\chi_{847}(62,\cdot) χ847(83,)\chi_{847}(83,\cdot) χ847(90,)\chi_{847}(90,\cdot) χ847(139,)\chi_{847}(139,\cdot) χ847(160,)\chi_{847}(160,\cdot) χ847(167,)\chi_{847}(167,\cdot) χ847(195,)\chi_{847}(195,\cdot) χ847(216,)\chi_{847}(216,\cdot) χ847(237,)\chi_{847}(237,\cdot) χ847(244,)\chi_{847}(244,\cdot) χ847(272,)\chi_{847}(272,\cdot) χ847(293,)\chi_{847}(293,\cdot) χ847(314,)\chi_{847}(314,\cdot) χ847(321,)\chi_{847}(321,\cdot) χ847(349,)\chi_{847}(349,\cdot) χ847(370,)\chi_{847}(370,\cdot) χ847(391,)\chi_{847}(391,\cdot) χ847(398,)\chi_{847}(398,\cdot) χ847(426,)\chi_{847}(426,\cdot) χ847(447,)\chi_{847}(447,\cdot) χ847(468,)\chi_{847}(468,\cdot) χ847(503,)\chi_{847}(503,\cdot) χ847(545,)\chi_{847}(545,\cdot) χ847(552,)\chi_{847}(552,\cdot) χ847(580,)\chi_{847}(580,\cdot) χ847(601,)\chi_{847}(601,\cdot) χ847(622,)\chi_{847}(622,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ55)\Q(\zeta_{55})
Fixed field: Number field defined by a degree 110 polynomial (not computed)

Values on generators

(122,365)(122,365)(1,e(67110))(-1,e\left(\frac{67}{110}\right))

First values

aa 1-11122334455668899101012121313
χ847(139,a) \chi_{ 847 }(139, a) 1111e(67110)e\left(\frac{67}{110}\right)e(110)e\left(\frac{1}{10}\right)e(1255)e\left(\frac{12}{55}\right)e(63110)e\left(\frac{63}{110}\right)e(3955)e\left(\frac{39}{55}\right)e(91110)e\left(\frac{91}{110}\right)e(15)e\left(\frac{1}{5}\right)e(211)e\left(\frac{2}{11}\right)e(722)e\left(\frac{7}{22}\right)e(155)e\left(\frac{1}{55}\right)
sage: chi.jacobi_sum(n)
 
χ847(139,a)   \chi_{ 847 }(139,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ847(139,))   \tau_{ a }( \chi_{ 847 }(139,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ847(139,),χ847(n,))   J(\chi_{ 847 }(139,·),\chi_{ 847 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ847(139,))  K(a,b,\chi_{ 847 }(139,·)) \; at   a,b=\; a,b = e.g. 1,2