from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,79]))
pari: [g,chi] = znchar(Mod(160,847))
χ847(6,⋅)
χ847(13,⋅)
χ847(41,⋅)
χ847(62,⋅)
χ847(83,⋅)
χ847(90,⋅)
χ847(139,⋅)
χ847(160,⋅)
χ847(167,⋅)
χ847(195,⋅)
χ847(216,⋅)
χ847(237,⋅)
χ847(244,⋅)
χ847(272,⋅)
χ847(293,⋅)
χ847(314,⋅)
χ847(321,⋅)
χ847(349,⋅)
χ847(370,⋅)
χ847(391,⋅)
χ847(398,⋅)
χ847(426,⋅)
χ847(447,⋅)
χ847(468,⋅)
χ847(503,⋅)
χ847(545,⋅)
χ847(552,⋅)
χ847(580,⋅)
χ847(601,⋅)
χ847(622,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(122,365) → (−1,e(11079))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ847(160,a) |
1 | 1 | e(11079) | e(107) | e(5524) | e(11071) | e(5523) | e(11017) | e(52) | e(114) | e(223) | e(552) |
pari: znchargauss(g,chi,a)
sage: chi.kloosterman_sum(a,b)