sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(110))
M = H._module
chi = DirichletCharacter(H, M([55,23]))
pari:[g,chi] = znchar(Mod(41,847))
Modulus: | 847 | |
Conductor: | 847 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 110 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ847(6,⋅)
χ847(13,⋅)
χ847(41,⋅)
χ847(62,⋅)
χ847(83,⋅)
χ847(90,⋅)
χ847(139,⋅)
χ847(160,⋅)
χ847(167,⋅)
χ847(195,⋅)
χ847(216,⋅)
χ847(237,⋅)
χ847(244,⋅)
χ847(272,⋅)
χ847(293,⋅)
χ847(314,⋅)
χ847(321,⋅)
χ847(349,⋅)
χ847(370,⋅)
χ847(391,⋅)
χ847(398,⋅)
χ847(426,⋅)
χ847(447,⋅)
χ847(468,⋅)
χ847(503,⋅)
χ847(545,⋅)
χ847(552,⋅)
χ847(580,⋅)
χ847(601,⋅)
χ847(622,⋅)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(122,365) → (−1,e(11023))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ847(41,a) |
1 | 1 | e(11023) | e(109) | e(5523) | e(110107) | e(556) | e(11069) | e(54) | e(112) | e(227) | e(5534) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)