Properties

Label 847.208
Modulus 847847
Conductor 847847
Order 6666
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(66))
 
M = H._module
 
chi = DirichletCharacter(H, M([55,63]))
 
pari: [g,chi] = znchar(Mod(208,847))
 

Basic properties

Modulus: 847847
Conductor: 847847
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6666
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 847.x

χ847(10,)\chi_{847}(10,\cdot) χ847(54,)\chi_{847}(54,\cdot) χ847(87,)\chi_{847}(87,\cdot) χ847(131,)\chi_{847}(131,\cdot) χ847(164,)\chi_{847}(164,\cdot) χ847(208,)\chi_{847}(208,\cdot) χ847(285,)\chi_{847}(285,\cdot) χ847(318,)\chi_{847}(318,\cdot) χ847(395,)\chi_{847}(395,\cdot) χ847(439,)\chi_{847}(439,\cdot) χ847(472,)\chi_{847}(472,\cdot) χ847(516,)\chi_{847}(516,\cdot) χ847(549,)\chi_{847}(549,\cdot) χ847(593,)\chi_{847}(593,\cdot) χ847(626,)\chi_{847}(626,\cdot) χ847(670,)\chi_{847}(670,\cdot) χ847(703,)\chi_{847}(703,\cdot) χ847(747,)\chi_{847}(747,\cdot) χ847(780,)\chi_{847}(780,\cdot) χ847(824,)\chi_{847}(824,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ33)\Q(\zeta_{33})
Fixed field: Number field defined by a degree 66 polynomial

Values on generators

(122,365)(122,365)(e(56),e(2122))(e\left(\frac{5}{6}\right),e\left(\frac{21}{22}\right))

First values

aa 1-11122334455668899101012121313
χ847(208,a) \chi_{ 847 }(208, a) 1111e(4166)e\left(\frac{41}{66}\right)e(56)e\left(\frac{5}{6}\right)e(833)e\left(\frac{8}{33}\right)e(5366)e\left(\frac{53}{66}\right)e(511)e\left(\frac{5}{11}\right)e(1922)e\left(\frac{19}{22}\right)e(23)e\left(\frac{2}{3}\right)e(1433)e\left(\frac{14}{33}\right)e(566)e\left(\frac{5}{66}\right)e(1011)e\left(\frac{10}{11}\right)
sage: chi.jacobi_sum(n)
 
χ847(208,a)   \chi_{ 847 }(208,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ847(208,))   \tau_{ a }( \chi_{ 847 }(208,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ847(208,),χ847(n,))   J(\chi_{ 847 }(208,·),\chi_{ 847 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ847(208,))  K(a,b,\chi_{ 847 }(208,·)) \; at   a,b=\; a,b = e.g. 1,2