sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(847, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([55,57]))
pari:[g,chi] = znchar(Mod(747,847))
Modulus: | 847 | |
Conductor: | 847 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 66 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ847(10,⋅)
χ847(54,⋅)
χ847(87,⋅)
χ847(131,⋅)
χ847(164,⋅)
χ847(208,⋅)
χ847(285,⋅)
χ847(318,⋅)
χ847(395,⋅)
χ847(439,⋅)
χ847(472,⋅)
χ847(516,⋅)
χ847(549,⋅)
χ847(593,⋅)
χ847(626,⋅)
χ847(670,⋅)
χ847(703,⋅)
χ847(747,⋅)
χ847(780,⋅)
χ847(824,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(122,365) → (e(65),e(2219))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 8 | 9 | 10 | 12 | 13 |
χ847(747,a) |
1 | 1 | e(6635) | e(65) | e(332) | e(665) | e(114) | e(2213) | e(32) | e(3320) | e(6659) | e(118) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)