Properties

Label 8788.473
Modulus 87888788
Conductor 21972197
Order 676676
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(676))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,283]))
 
pari: [g,chi] = znchar(Mod(473,8788))
 

Basic properties

Modulus: 87888788
Conductor: 21972197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 676676
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ2197(473,)\chi_{2197}(473,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 8788.be

χ8788(5,)\chi_{8788}(5,\cdot) χ8788(21,)\chi_{8788}(21,\cdot) χ8788(57,)\chi_{8788}(57,\cdot) χ8788(73,)\chi_{8788}(73,\cdot) χ8788(109,)\chi_{8788}(109,\cdot) χ8788(125,)\chi_{8788}(125,\cdot) χ8788(161,)\chi_{8788}(161,\cdot) χ8788(177,)\chi_{8788}(177,\cdot) χ8788(213,)\chi_{8788}(213,\cdot) χ8788(229,)\chi_{8788}(229,\cdot) χ8788(265,)\chi_{8788}(265,\cdot) χ8788(281,)\chi_{8788}(281,\cdot) χ8788(317,)\chi_{8788}(317,\cdot) χ8788(333,)\chi_{8788}(333,\cdot) χ8788(369,)\chi_{8788}(369,\cdot) χ8788(385,)\chi_{8788}(385,\cdot) χ8788(421,)\chi_{8788}(421,\cdot) χ8788(473,)\chi_{8788}(473,\cdot) χ8788(489,)\chi_{8788}(489,\cdot) χ8788(525,)\chi_{8788}(525,\cdot) χ8788(541,)\chi_{8788}(541,\cdot) χ8788(593,)\chi_{8788}(593,\cdot) χ8788(629,)\chi_{8788}(629,\cdot) χ8788(645,)\chi_{8788}(645,\cdot) χ8788(681,)\chi_{8788}(681,\cdot) χ8788(697,)\chi_{8788}(697,\cdot) χ8788(733,)\chi_{8788}(733,\cdot) χ8788(749,)\chi_{8788}(749,\cdot) χ8788(785,)\chi_{8788}(785,\cdot) χ8788(801,)\chi_{8788}(801,\cdot) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ676)\Q(\zeta_{676})
Fixed field: Number field defined by a degree 676 polynomial (not computed)

Values on generators

(4395,6593)(4395,6593)(1,e(283676))(1,e\left(\frac{283}{676}\right))

First values

aa 1-11133557799111115151717191921212323
χ8788(473,a) \chi_{ 8788 }(473, a) 1-111e(102169)e\left(\frac{102}{169}\right)e(207676)e\left(\frac{207}{676}\right)e(589676)e\left(\frac{589}{676}\right)e(35169)e\left(\frac{35}{169}\right)e(497676)e\left(\frac{497}{676}\right)e(615676)e\left(\frac{615}{676}\right)e(15338)e\left(\frac{15}{338}\right)e(3152)e\left(\frac{31}{52}\right)e(321676)e\left(\frac{321}{676}\right)e(126)e\left(\frac{1}{26}\right)
sage: chi.jacobi_sum(n)
 
χ8788(473,a)   \chi_{ 8788 }(473,a) \; at   a=\;a = e.g. 2