Properties

Label 8788.be
Modulus 87888788
Conductor 21972197
Order 676676
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8788, base_ring=CyclotomicField(676))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,263]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(5,8788))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 87888788
Conductor: 21972197
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 676676
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2197.p
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ676)\Q(\zeta_{676})
Fixed field: Number field defined by a degree 676 polynomial (not computed)

First 31 of 312 characters in Galois orbit

Character 1-1 11 33 55 77 99 1111 1515 1717 1919 2121 2323
χ8788(5,)\chi_{8788}(5,\cdot) 1-1 11 e(93169)e\left(\frac{93}{169}\right) e(651676)e\left(\frac{651}{676}\right) e(373676)e\left(\frac{373}{676}\right) e(17169)e\left(\frac{17}{169}\right) e(309676)e\left(\frac{309}{676}\right) e(347676)e\left(\frac{347}{676}\right) e(297338)e\left(\frac{297}{338}\right) e(4752)e\left(\frac{47}{52}\right) e(69676)e\left(\frac{69}{676}\right) e(2526)e\left(\frac{25}{26}\right)
χ8788(21,)\chi_{8788}(21,\cdot) 1-1 11 e(34169)e\left(\frac{34}{169}\right) e(69676)e\left(\frac{69}{676}\right) e(647676)e\left(\frac{647}{676}\right) e(68169)e\left(\frac{68}{169}\right) e(391676)e\left(\frac{391}{676}\right) e(205676)e\left(\frac{205}{676}\right) e(5338)e\left(\frac{5}{338}\right) e(4552)e\left(\frac{45}{52}\right) e(107676)e\left(\frac{107}{676}\right) e(926)e\left(\frac{9}{26}\right)
χ8788(57,)\chi_{8788}(57,\cdot) 1-1 11 e(68169)e\left(\frac{68}{169}\right) e(307676)e\left(\frac{307}{676}\right) e(449676)e\left(\frac{449}{676}\right) e(136169)e\left(\frac{136}{169}\right) e(613676)e\left(\frac{613}{676}\right) e(579676)e\left(\frac{579}{676}\right) e(179338)e\left(\frac{179}{338}\right) e(5152)e\left(\frac{51}{52}\right) e(45676)e\left(\frac{45}{676}\right) e(526)e\left(\frac{5}{26}\right)
χ8788(73,)\chi_{8788}(73,\cdot) 1-1 11 e(111169)e\left(\frac{111}{169}\right) e(101676)e\left(\frac{101}{676}\right) e(467676)e\left(\frac{467}{676}\right) e(53169)e\left(\frac{53}{169}\right) e(347676)e\left(\frac{347}{676}\right) e(545676)e\left(\frac{545}{676}\right) e(71338)e\left(\frac{71}{338}\right) e(4152)e\left(\frac{41}{52}\right) e(235676)e\left(\frac{235}{676}\right) e(326)e\left(\frac{3}{26}\right)
χ8788(109,)\chi_{8788}(109,\cdot) 1-1 11 e(134169)e\left(\frac{134}{169}\right) e(431676)e\left(\frac{431}{676}\right) e(5676)e\left(\frac{5}{676}\right) e(99169)e\left(\frac{99}{169}\right) e(189676)e\left(\frac{189}{676}\right) e(291676)e\left(\frac{291}{676}\right) e(139338)e\left(\frac{139}{338}\right) e(352)e\left(\frac{3}{52}\right) e(541676)e\left(\frac{541}{676}\right) e(1126)e\left(\frac{11}{26}\right)
χ8788(125,)\chi_{8788}(125,\cdot) 1-1 11 e(110169)e\left(\frac{110}{169}\right) e(601676)e\left(\frac{601}{676}\right) e(443676)e\left(\frac{443}{676}\right) e(51169)e\left(\frac{51}{169}\right) e(251676)e\left(\frac{251}{676}\right) e(365676)e\left(\frac{365}{676}\right) e(215338)e\left(\frac{215}{338}\right) e(3752)e\left(\frac{37}{52}\right) e(207676)e\left(\frac{207}{676}\right) e(2326)e\left(\frac{23}{26}\right)
χ8788(161,)\chi_{8788}(161,\cdot) 1-1 11 e(122169)e\left(\frac{122}{169}\right) e(347676)e\left(\frac{347}{676}\right) e(393676)e\left(\frac{393}{676}\right) e(75169)e\left(\frac{75}{169}\right) e(389676)e\left(\frac{389}{676}\right) e(159676)e\left(\frac{159}{676}\right) e(177338)e\left(\frac{177}{338}\right) e(752)e\left(\frac{7}{52}\right) e(205676)e\left(\frac{205}{676}\right) e(1726)e\left(\frac{17}{26}\right)
χ8788(177,)\chi_{8788}(177,\cdot) 1-1 11 e(31169)e\left(\frac{31}{169}\right) e(217676)e\left(\frac{217}{676}\right) e(575676)e\left(\frac{575}{676}\right) e(62169)e\left(\frac{62}{169}\right) e(103676)e\left(\frac{103}{676}\right) e(341676)e\left(\frac{341}{676}\right) e(99338)e\left(\frac{99}{338}\right) e(3352)e\left(\frac{33}{52}\right) e(23676)e\left(\frac{23}{676}\right) e(1726)e\left(\frac{17}{26}\right)
χ8788(213,)\chi_{8788}(213,\cdot) 1-1 11 e(32169)e\left(\frac{32}{169}\right) e(55676)e\left(\frac{55}{676}\right) e(261676)e\left(\frac{261}{676}\right) e(64169)e\left(\frac{64}{169}\right) e(537676)e\left(\frac{537}{676}\right) e(183676)e\left(\frac{183}{676}\right) e(293338)e\left(\frac{293}{338}\right) e(1152)e\left(\frac{11}{52}\right) e(389676)e\left(\frac{389}{676}\right) e(2326)e\left(\frac{23}{26}\right)
χ8788(229,)\chi_{8788}(229,\cdot) 1-1 11 e(43169)e\left(\frac{43}{169}\right) e(301676)e\left(\frac{301}{676}\right) e(187676)e\left(\frac{187}{676}\right) e(86169)e\left(\frac{86}{169}\right) e(579676)e\left(\frac{579}{676}\right) e(473676)e\left(\frac{473}{676}\right) e(61338)e\left(\frac{61}{338}\right) e(2952)e\left(\frac{29}{52}\right) e(359676)e\left(\frac{359}{676}\right) e(1126)e\left(\frac{11}{26}\right)
χ8788(265,)\chi_{8788}(265,\cdot) 1-1 11 e(33169)e\left(\frac{33}{169}\right) e(231676)e\left(\frac{231}{676}\right) e(285676)e\left(\frac{285}{676}\right) e(66169)e\left(\frac{66}{169}\right) e(633676)e\left(\frac{633}{676}\right) e(363676)e\left(\frac{363}{676}\right) e(149338)e\left(\frac{149}{338}\right) e(1552)e\left(\frac{15}{52}\right) e(417676)e\left(\frac{417}{676}\right) e(326)e\left(\frac{3}{26}\right)
χ8788(281,)\chi_{8788}(281,\cdot) 1-1 11 e(146169)e\left(\frac{146}{169}\right) e(177676)e\left(\frac{177}{676}\right) e(631676)e\left(\frac{631}{676}\right) e(123169)e\left(\frac{123}{169}\right) e(327676)e\left(\frac{327}{676}\right) e(85676)e\left(\frac{85}{676}\right) e(101338)e\left(\frac{101}{338}\right) e(2552)e\left(\frac{25}{52}\right) e(539676)e\left(\frac{539}{676}\right) e(526)e\left(\frac{5}{26}\right)
χ8788(317,)\chi_{8788}(317,\cdot) 1-1 11 e(125169)e\left(\frac{125}{169}\right) e(199676)e\left(\frac{199}{676}\right) e(465676)e\left(\frac{465}{676}\right) e(81169)e\left(\frac{81}{169}\right) e(1676)e\left(\frac{1}{676}\right) e(23676)e\left(\frac{23}{676}\right) e(83338)e\left(\frac{83}{338}\right) e(1952)e\left(\frac{19}{52}\right) e(289676)e\left(\frac{289}{676}\right) e(926)e\left(\frac{9}{26}\right)
χ8788(333,)\chi_{8788}(333,\cdot) 1-1 11 e(2169)e\left(\frac{2}{169}\right) e(521676)e\left(\frac{521}{676}\right) e(555676)e\left(\frac{555}{676}\right) e(4169)e\left(\frac{4}{169}\right) e(23676)e\left(\frac{23}{676}\right) e(529676)e\left(\frac{529}{676}\right) e(219338)e\left(\frac{219}{338}\right) e(2152)e\left(\frac{21}{52}\right) e(563676)e\left(\frac{563}{676}\right) e(2526)e\left(\frac{25}{26}\right)
χ8788(369,)\chi_{8788}(369,\cdot) 1-1 11 e(139169)e\left(\frac{139}{169}\right) e(635676)e\left(\frac{635}{676}\right) e(125676)e\left(\frac{125}{676}\right) e(109169)e\left(\frac{109}{169}\right) e(669676)e\left(\frac{669}{676}\right) e(515676)e\left(\frac{515}{676}\right) e(95338)e\left(\frac{95}{338}\right) e(2352)e\left(\frac{23}{52}\right) e(5676)e\left(\frac{5}{676}\right) e(1526)e\left(\frac{15}{26}\right)
χ8788(385,)\chi_{8788}(385,\cdot) 1-1 11 e(118169)e\left(\frac{118}{169}\right) e(657676)e\left(\frac{657}{676}\right) e(635676)e\left(\frac{635}{676}\right) e(67169)e\left(\frac{67}{169}\right) e(343676)e\left(\frac{343}{676}\right) e(453676)e\left(\frac{453}{676}\right) e(77338)e\left(\frac{77}{338}\right) e(1752)e\left(\frac{17}{52}\right) e(431676)e\left(\frac{431}{676}\right) e(1926)e\left(\frac{19}{26}\right)
χ8788(421,)\chi_{8788}(421,\cdot) 1-1 11 e(75169)e\left(\frac{75}{169}\right) e(187676)e\left(\frac{187}{676}\right) e(617676)e\left(\frac{617}{676}\right) e(150169)e\left(\frac{150}{169}\right) e(609676)e\left(\frac{609}{676}\right) e(487676)e\left(\frac{487}{676}\right) e(185338)e\left(\frac{185}{338}\right) e(2752)e\left(\frac{27}{52}\right) e(241676)e\left(\frac{241}{676}\right) e(2126)e\left(\frac{21}{26}\right)
χ8788(473,)\chi_{8788}(473,\cdot) 1-1 11 e(102169)e\left(\frac{102}{169}\right) e(207676)e\left(\frac{207}{676}\right) e(589676)e\left(\frac{589}{676}\right) e(35169)e\left(\frac{35}{169}\right) e(497676)e\left(\frac{497}{676}\right) e(615676)e\left(\frac{615}{676}\right) e(15338)e\left(\frac{15}{338}\right) e(3152)e\left(\frac{31}{52}\right) e(321676)e\left(\frac{321}{676}\right) e(126)e\left(\frac{1}{26}\right)
χ8788(489,)\chi_{8788}(489,\cdot) 1-1 11 e(116169)e\left(\frac{116}{169}\right) e(305676)e\left(\frac{305}{676}\right) e(587676)e\left(\frac{587}{676}\right) e(63169)e\left(\frac{63}{169}\right) e(151676)e\left(\frac{151}{676}\right) e(93676)e\left(\frac{93}{676}\right) e(27338)e\left(\frac{27}{338}\right) e(952)e\left(\frac{9}{52}\right) e(375676)e\left(\frac{375}{676}\right) e(726)e\left(\frac{7}{26}\right)
χ8788(525,)\chi_{8788}(525,\cdot) 1-1 11 e(51169)e\left(\frac{51}{169}\right) e(19676)e\left(\frac{19}{676}\right) e(41676)e\left(\frac{41}{676}\right) e(102169)e\left(\frac{102}{169}\right) e(333676)e\left(\frac{333}{676}\right) e(223676)e\left(\frac{223}{676}\right) e(261338)e\left(\frac{261}{338}\right) e(3552)e\left(\frac{35}{52}\right) e(245676)e\left(\frac{245}{676}\right) e(726)e\left(\frac{7}{26}\right)
χ8788(541,)\chi_{8788}(541,\cdot) 1-1 11 e(167169)e\left(\frac{167}{169}\right) e(493676)e\left(\frac{493}{676}\right) e(459676)e\left(\frac{459}{676}\right) e(165169)e\left(\frac{165}{169}\right) e(315676)e\left(\frac{315}{676}\right) e(485676)e\left(\frac{485}{676}\right) e(119338)e\left(\frac{119}{338}\right) e(552)e\left(\frac{5}{52}\right) e(451676)e\left(\frac{451}{676}\right) e(126)e\left(\frac{1}{26}\right)
χ8788(593,)\chi_{8788}(593,\cdot) 1-1 11 e(140169)e\left(\frac{140}{169}\right) e(473676)e\left(\frac{473}{676}\right) e(487676)e\left(\frac{487}{676}\right) e(111169)e\left(\frac{111}{169}\right) e(427676)e\left(\frac{427}{676}\right) e(357676)e\left(\frac{357}{676}\right) e(289338)e\left(\frac{289}{338}\right) e(152)e\left(\frac{1}{52}\right) e(371676)e\left(\frac{371}{676}\right) e(2126)e\left(\frac{21}{26}\right)
χ8788(629,)\chi_{8788}(629,\cdot) 1-1 11 e(53169)e\left(\frac{53}{169}\right) e(371676)e\left(\frac{371}{676}\right) e(89676)e\left(\frac{89}{676}\right) e(106169)e\left(\frac{106}{169}\right) e(525676)e\left(\frac{525}{676}\right) e(583676)e\left(\frac{583}{676}\right) e(311338)e\left(\frac{311}{338}\right) e(4352)e\left(\frac{43}{52}\right) e(301676)e\left(\frac{301}{676}\right) e(1926)e\left(\frac{19}{26}\right)
χ8788(645,)\chi_{8788}(645,\cdot) 1-1 11 e(35169)e\left(\frac{35}{169}\right) e(245676)e\left(\frac{245}{676}\right) e(671676)e\left(\frac{671}{676}\right) e(70169)e\left(\frac{70}{169}\right) e(487676)e\left(\frac{487}{676}\right) e(385676)e\left(\frac{385}{676}\right) e(199338)e\left(\frac{199}{338}\right) e(4952)e\left(\frac{49}{52}\right) e(135676)e\left(\frac{135}{676}\right) e(1526)e\left(\frac{15}{26}\right)
χ8788(681,)\chi_{8788}(681,\cdot) 1-1 11 e(106169)e\left(\frac{106}{169}\right) e(235676)e\left(\frac{235}{676}\right) e(9676)e\left(\frac{9}{676}\right) e(43169)e\left(\frac{43}{169}\right) e(205676)e\left(\frac{205}{676}\right) e(659676)e\left(\frac{659}{676}\right) e(115338)e\left(\frac{115}{338}\right) e(4752)e\left(\frac{47}{52}\right) e(433676)e\left(\frac{433}{676}\right) e(2526)e\left(\frac{25}{26}\right)
χ8788(697,)\chi_{8788}(697,\cdot) 1-1 11 e(21169)e\left(\frac{21}{169}\right) e(485676)e\left(\frac{485}{676}\right) e(335676)e\left(\frac{335}{676}\right) e(42169)e\left(\frac{42}{169}\right) e(495676)e\left(\frac{495}{676}\right) e(569676)e\left(\frac{569}{676}\right) e(187338)e\left(\frac{187}{338}\right) e(4552)e\left(\frac{45}{52}\right) e(419676)e\left(\frac{419}{676}\right) e(926)e\left(\frac{9}{26}\right)
χ8788(733,)\chi_{8788}(733,\cdot) 1-1 11 e(81169)e\left(\frac{81}{169}\right) e(567676)e\left(\frac{567}{676}\right) e(85676)e\left(\frac{85}{676}\right) e(162169)e\left(\frac{162}{169}\right) e(509676)e\left(\frac{509}{676}\right) e(215676)e\left(\frac{215}{676}\right) e(335338)e\left(\frac{335}{338}\right) e(5152)e\left(\frac{51}{52}\right) e(409676)e\left(\frac{409}{676}\right) e(526)e\left(\frac{5}{26}\right)
χ8788(749,)\chi_{8788}(749,\cdot) 1-1 11 e(98169)e\left(\frac{98}{169}\right) e(517676)e\left(\frac{517}{676}\right) e(155676)e\left(\frac{155}{676}\right) e(27169)e\left(\frac{27}{169}\right) e(451676)e\left(\frac{451}{676}\right) e(233676)e\left(\frac{233}{676}\right) e(253338)e\left(\frac{253}{338}\right) e(4152)e\left(\frac{41}{52}\right) e(547676)e\left(\frac{547}{676}\right) e(326)e\left(\frac{3}{26}\right)
χ8788(785,)\chi_{8788}(785,\cdot) 1-1 11 e(147169)e\left(\frac{147}{169}\right) e(15676)e\left(\frac{15}{676}\right) e(317676)e\left(\frac{317}{676}\right) e(125169)e\left(\frac{125}{169}\right) e(85676)e\left(\frac{85}{676}\right) e(603676)e\left(\frac{603}{676}\right) e(295338)e\left(\frac{295}{338}\right) e(352)e\left(\frac{3}{52}\right) e(229676)e\left(\frac{229}{676}\right) e(1126)e\left(\frac{11}{26}\right)
χ8788(801,)\chi_{8788}(801,\cdot) 1-1 11 e(97169)e\left(\frac{97}{169}\right) e(341676)e\left(\frac{341}{676}\right) e(131676)e\left(\frac{131}{676}\right) e(25169)e\left(\frac{25}{169}\right) e(355676)e\left(\frac{355}{676}\right) e(53676)e\left(\frac{53}{676}\right) e(59338)e\left(\frac{59}{338}\right) e(3752)e\left(\frac{37}{52}\right) e(519676)e\left(\frac{519}{676}\right) e(2326)e\left(\frac{23}{26}\right)
χ8788(837,)\chi_{8788}(837,\cdot) 1-1 11 e(135169)e\left(\frac{135}{169}\right) e(607676)e\left(\frac{607}{676}\right) e(29676)e\left(\frac{29}{676}\right) e(101169)e\left(\frac{101}{169}\right) e(285676)e\left(\frac{285}{676}\right) e(471676)e\left(\frac{471}{676}\right) e(333338)e\left(\frac{333}{338}\right) e(752)e\left(\frac{7}{52}\right) e(569676)e\left(\frac{569}{676}\right) e(1726)e\left(\frac{17}{26}\right)