from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8788, base_ring=CyclotomicField(676))
M = H._module
chi = DirichletCharacter(H, M([0,641]))
pari: [g,chi] = znchar(Mod(73,8788))
χ8788(5,⋅)
χ8788(21,⋅)
χ8788(57,⋅)
χ8788(73,⋅)
χ8788(109,⋅)
χ8788(125,⋅)
χ8788(161,⋅)
χ8788(177,⋅)
χ8788(213,⋅)
χ8788(229,⋅)
χ8788(265,⋅)
χ8788(281,⋅)
χ8788(317,⋅)
χ8788(333,⋅)
χ8788(369,⋅)
χ8788(385,⋅)
χ8788(421,⋅)
χ8788(473,⋅)
χ8788(489,⋅)
χ8788(525,⋅)
χ8788(541,⋅)
χ8788(593,⋅)
χ8788(629,⋅)
χ8788(645,⋅)
χ8788(681,⋅)
χ8788(697,⋅)
χ8788(733,⋅)
χ8788(749,⋅)
χ8788(785,⋅)
χ8788(801,⋅)
...
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(4395,6593) → (1,e(676641))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ8788(73,a) |
−1 | 1 | e(169111) | e(676101) | e(676467) | e(16953) | e(676347) | e(676545) | e(33871) | e(5241) | e(676235) | e(263) |