Orbit label |
Conrey labels |
Modulus |
Conductor |
Order |
Kernel field |
Value field |
Parity |
Real |
Primitive |
Minimal |
156.a |
\(\chi_{156}(1, \cdot)\)
|
$156$ |
$1$ |
$1$ |
\(\Q\) |
\(\Q\) |
even |
✓ |
|
✓ |
156.b |
\(\chi_{156}(25, \cdot)\)
|
$156$ |
$13$ |
$2$ |
\(\Q(\sqrt{13}) \) |
\(\Q\) |
even |
✓ |
|
✓ |
156.c |
\(\chi_{156}(131, \cdot)\)
|
$156$ |
$12$ |
$2$ |
\(\Q(\sqrt{3}) \) |
\(\Q\) |
even |
✓ |
|
✓ |
156.d |
\(\chi_{156}(53, \cdot)\)
|
$156$ |
$3$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
\(\Q\) |
odd |
✓ |
|
✓ |
156.e |
\(\chi_{156}(103, \cdot)\)
|
$156$ |
$52$ |
$2$ |
\(\Q(\sqrt{-13}) \) |
\(\Q\) |
odd |
✓ |
|
✓ |
156.f |
\(\chi_{156}(79, \cdot)\)
|
$156$ |
$4$ |
$2$ |
\(\Q(\sqrt{-1}) \) |
\(\Q\) |
odd |
✓ |
|
✓ |
156.g |
\(\chi_{156}(77, \cdot)\)
|
$156$ |
$39$ |
$2$ |
\(\Q(\sqrt{-39}) \) |
\(\Q\) |
odd |
✓ |
|
✓ |
156.h |
\(\chi_{156}(155, \cdot)\)
|
$156$ |
$156$ |
$2$ |
\(\Q(\sqrt{39}) \) |
\(\Q\) |
even |
✓ |
✓ |
✓ |
156.i |
\(\chi_{156}(61, \cdot)\)$,$ \(\chi_{156}(133, \cdot)\)
|
$156$ |
$13$ |
$3$ |
3.3.169.1 |
\(\mathbb{Q}(\zeta_3)\) |
even |
|
|
✓ |
156.j |
\(\chi_{156}(73, \cdot)\)$,$ \(\chi_{156}(109, \cdot)\)
|
$156$ |
$13$ |
$4$ |
4.0.2197.1 |
\(\mathbb{Q}(i)\) |
odd |
|
|
✓ |
156.k |
\(\chi_{156}(31, \cdot)\)$,$ \(\chi_{156}(151, \cdot)\)
|
$156$ |
$52$ |
$4$ |
4.4.35152.1 |
\(\mathbb{Q}(i)\) |
even |
|
|
✓ |
156.l |
\(\chi_{156}(47, \cdot)\)$,$ \(\chi_{156}(83, \cdot)\)
|
$156$ |
$156$ |
$4$ |
4.0.316368.2 |
\(\mathbb{Q}(i)\) |
odd |
|
✓ |
✓ |
156.m |
\(\chi_{156}(5, \cdot)\)$,$ \(\chi_{156}(125, \cdot)\)
|
$156$ |
$39$ |
$4$ |
4.4.19773.1 |
\(\mathbb{Q}(i)\) |
even |
|
|
✓ |
156.n |
\(\chi_{156}(43, \cdot)\)$,$ \(\chi_{156}(127, \cdot)\)
|
$156$ |
$52$ |
$6$ |
6.0.23762752.1 |
\(\mathbb{Q}(\zeta_3)\) |
odd |
|
|
✓ |
156.o |
\(\chi_{156}(29, \cdot)\)$,$ \(\chi_{156}(113, \cdot)\)
|
$156$ |
$39$ |
$6$ |
6.0.771147.1 |
\(\mathbb{Q}(\zeta_3)\) |
odd |
|
|
✓ |
156.p |
\(\chi_{156}(35, \cdot)\)$,$ \(\chi_{156}(107, \cdot)\)
|
$156$ |
$156$ |
$6$ |
6.6.49353408.1 |
\(\mathbb{Q}(\zeta_3)\) |
even |
|
✓ |
✓ |
156.q |
\(\chi_{156}(49, \cdot)\)$,$ \(\chi_{156}(121, \cdot)\)
|
$156$ |
$13$ |
$6$ |
\(\Q(\zeta_{13})^+\) |
\(\mathbb{Q}(\zeta_3)\) |
even |
|
|
✓ |
156.r |
\(\chi_{156}(23, \cdot)\)$,$ \(\chi_{156}(95, \cdot)\)
|
$156$ |
$156$ |
$6$ |
6.6.641594304.1 |
\(\mathbb{Q}(\zeta_3)\) |
even |
|
✓ |
✓ |
156.s |
\(\chi_{156}(17, \cdot)\)$,$ \(\chi_{156}(101, \cdot)\)
|
$156$ |
$39$ |
$6$ |
6.0.10024911.1 |
\(\mathbb{Q}(\zeta_3)\) |
odd |
|
|
✓ |
156.t |
\(\chi_{156}(55, \cdot)\)$,$ \(\chi_{156}(139, \cdot)\)
|
$156$ |
$52$ |
$6$ |
6.0.1827904.1 |
\(\mathbb{Q}(\zeta_3)\) |
odd |
|
|
✓ |
156.u |
\(\chi_{156}(41, \cdot)\)$, \cdots ,$\(\chi_{156}(149, \cdot)\)
|
$156$ |
$39$ |
$12$ |
\(\Q(\zeta_{39})^+\) |
\(\Q(\zeta_{12})\) |
even |
|
|
✓ |
156.v |
\(\chi_{156}(11, \cdot)\)$, \cdots ,$\(\chi_{156}(119, \cdot)\)
|
$156$ |
$156$ |
$12$ |
12.0.5351362262028177408.1 |
\(\Q(\zeta_{12})\) |
odd |
|
✓ |
✓ |
156.w |
\(\chi_{156}(7, \cdot)\)$, \cdots ,$\(\chi_{156}(115, \cdot)\)
|
$156$ |
$52$ |
$12$ |
\(\Q(\zeta_{52})^+\) |
\(\Q(\zeta_{12})\) |
even |
|
|
✓ |
156.x |
\(\chi_{156}(37, \cdot)\)$, \cdots ,$\(\chi_{156}(145, \cdot)\)
|
$156$ |
$13$ |
$12$ |
\(\Q(\zeta_{13})\) |
\(\Q(\zeta_{12})\) |
odd |
|
|
✓ |