Genus 2 curves in isogeny class 196.a
Label | Equation |
---|---|
196.a.21952.1 | \(y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1\) |
L-function data
Analytic rank: | \(0\) | ||||||||||||||||||||
Mordell-Weil rank: | \(0\) | ||||||||||||||||||||
Bad L-factors: |
| ||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||
See L-function page for more information |
Sato-Tate group
\(\mathrm{ST} =\) $E_1$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
Elliptic curve isogeny class 14.a
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.