Properties

Label 196.a
Conductor 196196
Sato-Tate group E1E_1
End(JQ)R\End(J_{\overline{\Q}}) \otimes \R M2(R)\mathrm{M}_2(\R)
End(JQ)Q\End(J_{\overline{\Q}}) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
End(J)Q\End(J) \otimes \Q M2(Q)\mathrm{M}_2(\Q)
Q\overline{\Q}-simple no
GL2\mathrm{GL}_2-type no

Related objects

Learn more

Genus 2 curves in isogeny class 196.a

Label Equation
196.a.21952.1 y2+(x2+x)y=x6+3x5+6x4+7x3+6x2+3x+1y^2 + (x^2 + x)y = x^6 + 3x^5 + 6x^4 + 7x^3 + 6x^2 + 3x + 1

L-function data

Analytic rank:00
Mordell-Weil rank:00
 
Bad L-factors:
Prime L-Factor
22(1+T)2 ( 1 + T )^{2}
77(1T)2 ( 1 - T )^{2}
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 (1+2T+3T2)2 ( 1 + 2 T + 3 T^{2} )^{2} 2.3.e_k
55 (1+5T2)2 ( 1 + 5 T^{2} )^{2} 2.5.a_k
1111 (1+11T2)2 ( 1 + 11 T^{2} )^{2} 2.11.a_w
1313 (1+4T+13T2)2 ( 1 + 4 T + 13 T^{2} )^{2} 2.13.i_bq
1717 (16T+17T2)2 ( 1 - 6 T + 17 T^{2} )^{2} 2.17.am_cs
1919 (12T+19T2)2 ( 1 - 2 T + 19 T^{2} )^{2} 2.19.ae_bq
2323 (1+23T2)2 ( 1 + 23 T^{2} )^{2} 2.23.a_bu
2929 (1+6T+29T2)2 ( 1 + 6 T + 29 T^{2} )^{2} 2.29.m_dq
\cdots\cdots\cdots
 
See L-function page for more information

Sato-Tate group

ST=\mathrm{ST} = E1E_1, ST0=SU(2)\quad \mathrm{ST}^0 = \mathrm{SU}(2)

Decomposition of the Jacobian

Splits over Q\Q

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  Elliptic curve isogeny class 14.a

Endomorphisms of the Jacobian

Not of GL2\GL_2-type over Q\Q

Endomorphism algebra over Q\Q:

End(J)Q\End (J_{}) \otimes \Q \simeqM2(\mathrm{M}_2(Q\Q))
End(J)R\End (J_{}) \otimes \R\simeq M2(R)\mathrm{M}_2 (\R)

All Q\overline{\Q}-endomorphisms of the Jacobian are defined over Q\Q.

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.