L(s) = 1 | − 2-s + 2·3-s − 2·6-s + 7-s − 8-s + 3·9-s − 14-s + 16-s − 17-s − 3·18-s + 2·21-s − 2·24-s − 4·25-s + 2·27-s + 32-s + 34-s − 37-s − 2·42-s − 4·47-s + 2·48-s + 49-s + 4·50-s − 2·51-s − 53-s − 2·54-s − 56-s − 59-s + ⋯ |
L(s) = 1 | − 2-s + 2·3-s − 2·6-s + 7-s − 8-s + 3·9-s − 14-s + 16-s − 17-s − 3·18-s + 2·21-s − 2·24-s − 4·25-s + 2·27-s + 32-s + 34-s − 37-s − 2·42-s − 4·47-s + 2·48-s + 49-s + 4·50-s − 2·51-s − 53-s − 2·54-s − 56-s − 59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 47^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut &\left(7^{8} \cdot 47^{8}\right)^{s/2} \, \Gamma_{\C}(s)^{8} \, L(s)\cr=\mathstrut & \,\Lambda(1-s)\end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.1527470971\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.1527470971\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} \) |
| 47 | \( ( 1 + T + T^{2} )^{4} \) |
good | 2 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 3 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 5 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 11 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 13 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 17 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 19 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 23 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 29 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 31 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 37 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 41 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 43 | \( ( 1 - T )^{8}( 1 + T )^{8} \) |
| 53 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 59 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 61 | \( ( 1 + T + T^{2} + T^{3} + T^{4} )^{2}( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} ) \) |
| 67 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 71 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 73 | \( ( 1 - T + T^{2} )^{4}( 1 + T + T^{2} )^{4} \) |
| 79 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 83 | \( ( 1 + T + T^{2} )^{8} \) |
| 89 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
| 97 | \( ( 1 - T + T^{3} - T^{4} + T^{5} - T^{7} + T^{8} )^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{16} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−5.47907303025714143626134814770, −5.18118346552035789536329621453, −5.13171704548076107549426400459, −5.06753779487272236067716293054, −4.86023436445515047227807239936, −4.76386455813186233448959683750, −4.31942202782266471653121033957, −4.31284991009843045661816457700, −4.30098233821970231797049191624, −4.07457665983559261799411358079, −3.86654237710398461413584328865, −3.85318803289625649839914512541, −3.64692453493006510428542000412, −3.35300331510020270218540063404, −3.30804352399552803289161103522, −2.98684283668355827670913848217, −2.90183104402826162231304474382, −2.86233327996632195942287932181, −2.41612396739851796074505688589, −2.26449363185006760463762289466, −2.11133047432001115468590785707, −1.80868600520281066469065676046, −1.68645756168233095062941011887, −1.48246323250519140429948159420, −1.47036536131553938298971534235,
1.47036536131553938298971534235, 1.48246323250519140429948159420, 1.68645756168233095062941011887, 1.80868600520281066469065676046, 2.11133047432001115468590785707, 2.26449363185006760463762289466, 2.41612396739851796074505688589, 2.86233327996632195942287932181, 2.90183104402826162231304474382, 2.98684283668355827670913848217, 3.30804352399552803289161103522, 3.35300331510020270218540063404, 3.64692453493006510428542000412, 3.85318803289625649839914512541, 3.86654237710398461413584328865, 4.07457665983559261799411358079, 4.30098233821970231797049191624, 4.31284991009843045661816457700, 4.31942202782266471653121033957, 4.76386455813186233448959683750, 4.86023436445515047227807239936, 5.06753779487272236067716293054, 5.13171704548076107549426400459, 5.18118346552035789536329621453, 5.47907303025714143626134814770
Plot not available for L-functions of degree greater than 10.